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Preface
In a policy document titled “An Important Message to 
Admissions Officers About the New SAT®” (May 15, 
2004), the College Board states:

A diagnostic feature will be added to the SAT to 
provide information to help improve a student’s 
academic skills. In developing the SAT, the College 
Board works with committees of subject-matter 
experts, college faculty, and high school teachers 
to identify the critical thinking skills in reading, 
mathematics, and writing needed for academic 
success in college. Beginning with the new SAT, 
students will receive feedback on how well they 
performed on these college success skills. This 
information will help both students and secondary 
schools focus on those critical thinking skills 
important for college readiness. Research is 
currently under way to determine the most effective 
methodologies and reporting formats.

Our three-year program of research (Gierl, 2004) contains 
a series of studies for evaluating one methodology to 
promote diagnostic testing with the SAT. All three 
years are interdependent and, ultimately, related to 
improving the diagnostic utility of the SAT. In year 1, 
we will identify the dimensions that characterize student 
performance on the SAT. By assessing test dimensionality 
we can specify the “minimum number of dimensions or 
statistical abilities required to fully describe all test-related 
differences among the examinees in a population” (Tate, 
2002) or “the number of detectable constructs the test is 
measuring” (Douglas, Kim, Roussos, Stout, and Zhang, 
1999). We used both statistically based dimensionality 
analyses and content-based substantive analyses to identify 
and interpret the cognitive dimensions measured on the 
mathematics and critical reading sections of the SAT. 
The first set of results from these analyses is presented 
in this report. Once these dimensions are identified and 
interpreted, their stability across specific subgroups of 
examinees (e.g., gender, race, ethnicity) will be evaluated 
in both mathematics and critical reading. Hence, in year 2 
of the proposed research, dimensionality-based subgroup 
analyses will be conducted using the differential item 
functioning (DIF) analysis paradigm (see Gierl, Bisanz, 
Bisanz, and Boughton, 2003; Gierl and Khaliq, 2001; 
Roussos and Stout, 1996). The studies conducted in year 
2 will determine if the dimensions identified in year 1 
are stable across different subgroups of examinees who 
take the SAT. Finally, in year 3 of the proposed research, 
the attribute hierarchy method (AHM) for cognitive 
diagnosis (Leighton, Gierl, and Hunka, 2004; see also 
Gierl, Leighton, and Hunka, 2000) will be applied to data 

from the mathematics and critical reading sections to 
identify students’ cognitive strengths and weaknesses. 
The AHM is a psychometric method designed explicitly 
to link cognitive theory and measurement practice to 
facilitate the development and analysis of educational 
and psychological tests. The AHM will be applied to SAT 
data to extract diagnostic information about students’ 
cognitive skills in mathematics and critical reading. In 
sum, our research program is designed to enhance the 
diagnostic value of the SAT by providing both a diagnostic 
framework and the empirical results to support the use of 
our framework in a large-scale testing program.

Introduction
The starting point for this program of research is the 
identification and interpretation of cognitive dimensions 
that characterize student performance on the SAT. The 
outcomes from the dimensionality analyses will serve 
as the foundation for the research conducted in years 2 
and 3. Unfortunately, dimensionality assessment is not a 
straightforward process. Rather, it entails complex analyses 
with numerous decisions and consequences resulting from 
these decisions that can lead to different answers to the 
question, what is the dimensional structure for this test?1 
In this report we highlight key and sometimes contentious 
issues related to dimensionality assessment when the goal 
is to identify a dimensional structure that can promote 
diagnostic assessment. We will also present the first set of 
results from our research on the dimensionality of the SAT.2 
The structure of this report is as follows: (a) We begin with 
a description of diagnostic assessment; (b) we review the 
outcomes from previous research on the dimensionality 
of the SAT; (c) we describe the data and methods used 
in the current study; (d) we present the results from both 
exploratory and confirmatory dimensionality analyses, 
(e) we summarize the main findings from our study and, 
finally, (f) we outline the next steps that will be taken to 
interpret the dimensional structure of the SAT.

Diagnostic 
Assessment and the 
SAT®: Preliminary 
Considerations
Diagnosis was defined by the influential philosopher and 
evaluator Michael Scriven (1991) as:

1 Dorans and Lawrence (1999) characterize this complex decision-making process as the “relative dimensionality principle,” which states that the 
dimensions extracted from the data depend on many factors including the number of each type of measure entered into the analysis, the metric of 
the analysis, the methods used for analysis, and the unit of analysis.
2 The second set of dimensionality results will be presented in Technical Report #2. This report will be completed by June 30, 2005.
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The process of determining the nature of an 
affliction, of a putative symptom of disorder, or 
of poor performance, and/or the report resulting 
from the process. This may or may not happen to 
involve identification of the cause of the condition, 
but it always involves classifying the condition 
in terms of an accepted typology of afflictions or 
malfunctions, hence the terms it uses are evaluative. 
Diagnosis is not a primary type of evaluation; it 
presupposes that a true evaluation—such as the 
annual checkup—has already occurred, and has led 
to the conclusion that something is wrong. The task 
of diagnosis is classificatory. (p. 124)

Similarly, cognitively diagnostic assessment can be 
considered the process whereby test results are used 
to identify and classify examinees’ cognitive skills. In 
fact, a defining characteristic of cognitively diagnostic 
assessment, according to Nichols (1994), is an explicit 
statement of the substantive assumptions used by 
test developers to construct test items and assign test 
scores. These substantive assumptions often specify the 
knowledge and skills required by examinees to solve test 
items. Thus, the diagnostic process is designed to identify 
and report the cognitively based symptoms associated 
with diverse test performance, thereby providing 
examinees with information about their problem-solving 
strengths and weaknesses.

Subscore analyses can guide the diagnostic process 
when these subscores have an interpretable dimensional 
structure. For example, if a test is developed to measure 
diverse cognitive skills across numerous content areas, 
then the test specifications imply a multidimensional 
structure with different cognitive skills and content 
areas reflecting different dimensions measured in the 
domain of interest. In this case, the total score could be 
viewed as a composite measure of the cognitive skills 
and content areas whereas the subscores could represent 
dimensionally homogeneous measures of the specific 
cognitive skill and content area combinations, as outlined 
in the test specifications.

Richard E. Snow,3 for one, claimed that psychologically 
meaningful and useful subscores could be obtained from 
conventional achievement tests. Moreover, he argued 
these subscores represented important ability dimensions 
that would show different patterns of relationships among 
demographic, cognitive, and affective variables. To 
further this view, Snow developed and began applying a 
multidimensional approach to achievement test validation 
in his later work (e.g., Hamilton, Nussbaum, Kupermintz, 

Kerkhoven, and Snow, 1995; Kupermintz, Ennis, Hamilton, 
Talbert, and Snow, 1995; Kupermintz and Snow, 1997; 
Nussbaum, Hamilton, and Snow, 1997; see also special 
issue of Educational Assessment, Vol. 8, No. 2, 2002).

Whether used during the test development or analysis 
stage, a multidimensional approach to test score validation 
is compelling because it suggests that psychologically 
complex constructs can be found in educational and 
psychological tests. These constructs are identified using 
contemporary dimensionality procedures and reported as 
subscores. By implication, a multidimensional approach 
also suggests that educational and psychological tests can 
have diagnostic value because reliable and valid information 
about examinees’ cognitive strengths and weaknesses can 
be obtained from their performance on well-defined, 
dimensionally distinct subtests (Standards for Educational 
and Psychological Testing, 1999; Tate, 2002, 2004). The 
results can then be reported as subscores (Goodman 
and Hambleton, 2004; Standards for Educational and 
Psychological Testing, 1999). These subscores can help 
direct remedial efforts, particularly when examinees do 
poorly on the exam, by highlighting specific areas where 
improvements are needed.

Previous Research on 
the Dimensionality of 
the SAT
It is useful to evaluate the existing literature on the 
dimensionality of the SAT because results for the previous 
version of the SAT may inform the current SAT, given 
that the two tests are closely related. This literature 
review is particularly important given the widely held 
belief that the SAT measures a unidimensional construct.4 
Only three studies on the dimensionality of the SAT were 
found in our review of the literature, and only one of 
these studies was published. The three studies include:

1. Cook, L. L., Dorans, N. J., & Eignor, D. R. (1988). An 
assessment of the dimensionality of three SAT-Verbal test 
editions. Journal of Educational Statistics, 13, 19–43.

2. Diones, R., Bejar, I. I., & Chaffin, R. (1996, January). 
The dimensionality of responses to SAT analogy items. 
ETS Research Report. Princeton, NJ: ETS.

3. Lawrence, I. M., & Dorans, N. J. (1987, April). An 
assessment of the dimensionality of SAT-Mathematical. 

3 Richard Snow was the Howard H. and Jessie T. Watkins University Professor Emeritus of Education at Stanford University.  He died in 1997. Snow 
was one of the early advocates for combining cognitive principles with measurement practices. His 1989 chapter in Educational Measurement, 3rd 
Edition, coauthored with David Lohman, titled “Implications of Cognitive Psychology for Educational Measurement” is a seminal work in the disci-
plines of both cognitive psychology and educational measurement.
4 The perception that the current SAT measures a unidimensional contruct became apparent to us when Dr. Joan Herman, discussant at a NCME 
2004 session in San Diego organized by Dr. Kristen Huff called “Connecting Curriculum and Assessment Through Meaningful Score Reports,” 
claimed that subscale reporting was not feasible because it was well-known that the SAT is unidimensional. However, Dr. Herman did not present 
any empirical evidence to support her claim about this important property of the SAT.
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Paper presented at the annual meeting of the National 
Council on Measurement in Education, Washington, DC.

In the first study, Cook et al. (1988) used confirmatory 
factor analysis to assess the dimensionality of the 
SAT verbal (SAT-V) section. Three different forms 
of the SAT-V were compared. The results from the 
factor analysis revealed that the SAT-V was “slightly 
multidimensional”5 and that the three forms of the 
SAT-V were not strictly parallel (which, again, suggests 
that different constructs may be measured across 
forms). The authors concluded by calling for additional 
dimensionality studies on the SAT because this type 
of research “…might yield diagnostics that could be 
used to arrive at more informed psychometric decisions 
about test specifications, and about the equating and 
scoring of the SAT” (p. 40).

In the second study, Diones et al. (1996) evaluated two 
item clusters—intensional and pragmatic—believed to 
underlie student performance on the analogy items from the 
SAT. The intensional-pragmatic dichotomy was originally 
used by Bejar, Chaffin, and Embretson (1991) and Chaffin 
and Pierce (1987) to describe the type of knowledge 
required to solve items on the GRE. The purpose of this 
study was to replicate Bejar et al. (1991) in order to assess 
whether the analogy items on the SAT would also produce 
a two-dimensional structure. Both confirmatory and 
exploratory factor analysis was used. For the confirmatory 
factor analysis, the intensional-pragmatic bidimensionality 
was not found for the specified item clusters. Rather, the 
test remained “unremittingly unidimensional.” However, 
using exploratory factor analysis, different item clusters 
were produced, resulting in a two-factor solution. The 
outcomes from the confirmatory and exploratory analysis 
caused the authors to conclude “…the [analogy] test was 
not in all forms unidimensional” (p. 16).

In the third study, Lawrence and Dorans (1987) used 
exploratory and confirmatory factor analysis to assess the 
dimensionality of the SAT math section (SAT-M) across 
six forms. Confirmatory analyses of item parcels “strongly 
indicate that the SAT-Mathematical Test is unidimensional” 
(p. 22). Exploratory analyses of the item-level data, on the other 
hand, revealed a “slight departure from unidimensionality” 
attributable to the geometry items.

Taken together, the results from these three studies 
are diffuse, especially as they pertain to the question, 
what is the dimensionality of the SAT? It appears that 
the SAT verbal section measures a multidimensional 
construct whereas the SAT math section measures a 
unidimensional construct. However, this conclusion is far 
from certain for a number of reasons. First, only a small 
number of studies have been conducted to evaluate the 
dimensionality of the SAT. Given the tentative conclusions 

presented by the authors in these studies, far more research 
is needed to evaluate the dimensionality of the SAT. 
Second, the dimensionality studies cited draw on one 
procedure—factor analysis. No studies were found that use 
a multimethod approach or that implement the procedures 
associated with recent developments in nonparametric 
dimensionality assessment such as DIMTEST, DETECT, 
or HCA (Douglas, Kim, Roussos, Stout, and Zhang, 1999; 
Stout, Habing, Douglas, Kim, Roussos, and Zhang, 1996). 
Third, the studies cited were not designed to evaluate the 
diagnostic potential of the SAT. Rather, the dimensionality 
analyses were content-based (particularly the first and 
third studies) and, as a result, the outcomes from these 
studies shed no light on the dimensional structure of the 
SAT, as it might relate to diagnostic assessment.6 From 
our review of the literature, we conclude that it is not 
accurate to assume that the SAT measures a well-defined 
unidimensional construct—far more empirical evidence is 
required to substantiate this claim.

Methods
In this section, we describe the SAT test items, the 2003 
Field Trial used to collect the SAT student-response data, 
and the dimensionality analyses used in the current study.

SAT Test Items
The SAT is a standardized test designed to measure 
college readiness. Both critical thinking and reasoning 
skills are evaluated. The test contains three sections: 
mathematics, critical reading, and writing. However, 
only the dimensionality in the first two sections will be 
evaluated in our study.

The math section contains 54 items administered in 
two 25-minute sections and one 20-minute section. For 
these items, students are expected to solve unfamiliar 
problems using key mathematical concepts in the areas 
of Number and Operations; Algebra I, II, and Functions; 
Geometry; and Statistics, Probability, and Data Analysis. 
Multiple-choice and constructed-response item formats 
are used, but the items for both formats are scored 
dichotomously.

The critical reading section contains 67 items also 
administered in two 25-minute sections and one 20-minute 
section. For these items, students are expected to draw 
inferences from text, synthesize information, distinguish 
between main and supporting ideas, understand word 
meaning, follow the logic of an argument, and recognize 
genres. Students solve sentence-completion items in 
addition to critical reading items associated with short and 
long reading passages using content drawn from natural 

5 Using data from the verbal section of the SAT to illustrate the distinction between item-level and test-level dimensionality, Dorans and Lawrence 
(1999) also concluded that the SAT-Verbal was multidimensional at both the micro- and macro-level of analysis (see pp. 21–32).
6 This point is particularly important in light of the fact that any model of the “correct” dimensionality is not unique, meaning that other statistical 
models can also be found that fit the data.  As a result, Tate (2002), among others, suggests that substantive considerations guide the selection of the 
final statistical model, given that different models can be specified that fit the data.



4

sciences, social studies, literary fiction, and humanities. 
All items are multiple choice and, therefore, scored 
dichotomously.

2003 Field Trial Sample Data
Data from Design 1 of the SAT and  new PSAT/NMSQT® 
(Preliminary SAT/National Merit Scholarship Qualifying 
Test) spring 2003 field trial (Liu, Feigenbaum, and 
Walker, 2004) were used in the current study. Design 1 
was the major component of the field trial in which the 
content and the statistical properties for the SAT were 
evaluated. This design included 13 booklets containing 
different combinations of SAT and PSAT/NMSQT 
items spiraled within classroom to achieve comparable 
groups and appropriate sample sizes for all follow-up 
analyses (see Table 1 in Liu, Feigenbaum, and Walker, 
2004). The examinees in the sample were primarily high 
school juniors who attended schools that volunteered to 
participate in the field trial. The field trial sample was 
deemed to be similar to but not entirely representative 
of the baseline cohort of college-bound seniors who 
took the SAT in 2002. Nevertheless, the results from 
comprehensive analyses allowed Liu, Feigenbaum, and 
Walker (2004) to conclude that the student sample who 
completed the field test items would allow researchers to 
adequately evaluate important psychometric issues on the 
SAT, including the dimensionality of the test.

Data from three different books were used in the 
current study: Books 2a, 2c, and 5.7 These books were used 
for three reasons. First, the use of multiple forms allowed 
us to initially test our hypotheses and models and then 
cross-validate the results to ensure the outcomes were 
stable and consistent across samples. As a result, Book 2a 
was designated the primary sample and Books 2c and 5 
were seen as the cross-validation samples. All preliminary 
analyses were conducted using the Book 2a data. Second, 
the field test design promoted comparisons across forms 
because only student samples differed across the books 
(i.e., all books contained the same test items). As a result, 
the stability of the item characteristics and the dimensions 

was easily assessed. Third, the sample sizes in Books 2a and 
2c were relatively large and amenable to dimensionality 
analyses because these samples were also used in the major 
equating study (Liu, Feigenbaum, and Walker, 2004, p. 8). 
Book 5 was selected as a second cross-validation sample 
because these data were used by ETS and the College Board 
in many of their preliminary SAT analyses (Dr. Kristen 
Huff, personal communication, June 29, 2004). The content 
and the sample size for these three test booklets are shown 
in Table 1. The comparability of the test booklets is apparent 
in this table: Although the three forms differed in sections 5 
and 9, the positions of the forms containing the data used in 
the current study—mathematics and critical reading—were 
identical across forms. The sample sizes across these three 
booklets were also adequate, exceeding 2,000 examinees in 
each form.

Description of Dimensionality 
Assessment Procedures
Embretson and Reise (2000), in their recent review and 
critique of dimensionality assessment in educational and 
psychological testing, claimed that:

“…researchers should now be starting to move 
away from reporting heuristic indices such as 
‘variance accounted for by the first factor’ or ‘ratio 
of first to second eigenvalue’ and start implementing 
the new procedures that tackle these issues in a 
much more sophisticated manner. [Specifically, as 
described in this chapter] we recommend more 
application of Stout’s procedure for determining 
essential unidimensionality and/or applications 
of appropriate techniques such as those found 
in TESTFACT, POLYFACT, NOHARM, and 
LISCOMP.” (p. 245)

We acted on this suggestion by conducting extensive 
parametric and nonparametric dimensionality analyses 
using data from the mathematics and critical reading 
sections of the 2003 field trial. The results from this 
study are designed to provide a point of comparison 

7  Book 2a was also denoted as TD Form Code 3ZNN11 and Systems Form Code 111 in the nSAT Field Test documentation; Book 2c was coded as 
TD Form Code 3ZNN13 and Systems Form Code 113; and Book 5 was specified as TD Form Code 3ZNN18 and Systems Form Code 118.

Table 1
Field Trial Design 1 Test Book Summary

Book Sample

Section in Book

1 2 3 4 5 6 7 8 9

2a 2,443 SAT Essay SAT Math
SAT 

Reading
SAT Math

PSAT/NMSQT 
Reading

SAT 
Reading

SAT Math
SAT 

Reading
SAT 

Writing

2c 2,336 SAT Essay SAT Math
SAT 

Reading
SAT Math

PSAT/NMSQT 
Math

SAT 
Reading

SAT Math
SAT 

Reading
SAT 

Writing

5 2,202 SAT Essay SAT Math
SAT 

Reading
SAT Math SAT Writing

SAT 
Reading

SAT Math
SAT 

Reading
Pretest

Note: The data from sections 1, 5, and 9, highlighted in italics, were not used in the current study.
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with results from existing SAT dimensionality analyses 
and to draw on the potential benefits associated with 
recent developments in dimensionality assessment. Three 
dimensional procedures are used extensively in our study: 
DIMTEST, DETECT, and nonlinear factor analysis.

DIMTEST Overview
DIMTEST is a nonparametric statistical procedure that 
conducts a hypothesis test to assess the presence of 
multidimensionality (Froelich, 2000; Froelich and Habing, 
2001). This procedure is based on Stout’s (1987) concept 
of  “essential unidimensionality,” which holds when 
only one dominant dimension influences the examinees’ 
performance on a set of test items (Hattie, Krakowski, 
Rogers, and Swaminathan, 1996; Nandakumar, 1991; 
Nandakumar and Stout, 1993; Stout, Habing, Douglas, 
Kim, Roussos, and Zhang, 1996). DIMTEST is used to 
test the hypothesis, H0:d=1 versus H1:d>1, where d is the 
number of dimensions. DIMTEST has undergone two 
major revisions since it was introduced. The first revision 
was undertaken by Nandakumar and Stout (1993) and 
the second by Froelich (2000). In the current study, the 
most recent version of DIMTEST is used and, as a result, 
the most recent version is described in our overview.

DIMTEST is based on the idea that if a test is 
unidimensional then the conditional covariance between 
any two items on the assessment subtest (AT) is zero 
after conditioning on the partitioning subtest (PT), or  
E[Cov(Xi1, Xi2 | θPT)] = 0. If, on the other hand, a test 
is multidimensional then the conditional covariance 
between any two items on the AT is greater than zero after 
conditioning on the PT, or E[Cov(Xi1 Xi2 | θPT)] > 0 (Zhang 
and Stout, 1999). Therefore, testing whether the conditional 
covariance is zero is analogous to testing the assumption of 
weak local independence (Stout, 1987). Conceptually, this 
test means that after conditioning on scores associated with 
the PT, which is the total score for those items that primarily 
measure θ1, then the expected value of the covariance for 
those items that compose the AT, which is the total score 
for those items that primarily measure θ2, will be zero if the 
AT and the PT are measuring the same dimension. This 
outcome occurs because any dependency between AT item 
responses is removed by conditioning on the PT, if the test 
structure is truly unidimensional. 

The conditional covariances are estimated by finding 
the difference between the total test variability and item 
variability for examinees with the same score, k, on the PT 
because total test variability (σ2

x ) can be written as a sum:

2
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From this expression, the terms can be rearranged to 
produce the covariance, which, in turn, can be written as 
the difference:
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Conditional covariance is obtained by calculating the 
covariance for examinees with the same score, k, on the 
PT items, which is expressed as:
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When these three expressions are considered together, 
the DIMTEST test statistic can then be defined as:

2
L BT T

T
��  ,

where the value of TL in the numerator of the test 
statistic is based on the sum of the estimated conditional 
covariances between the AT items for examinees that have 
obtained the same score, k, on the PT items. Specifically: 
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where k represents the subgroup of examinees with 
the same score on the PT items, TL,k is the conditional 
covariance, and S2

k is the asymptotic variance of TL,k. 
The second term in the numerator of the test statistic is 
a correction for the bias that is known to exist for a test 
of finite length when test data are unidimensional. The 
test statistic, T, is known to have an asymptotic normal 
distribution as the number of examinees and items 
approach infinity (Froelich, 2000).

In earlier versions of DIMTEST it was necessary to 
identify another set of items, distinct from the AT and 
the PT, to correct for this bias. This set of items needed 
to be similar in item difficulty to the AT, and was referred 
to as AT2. Typically, items for AT2 were hard to identify, 
especially when the total number of items on the test was 
relatively small. This limitation was eliminated recently 
by Froelich (2000). Although the bias correction is still 
necessary, the new version of DIMTEST makes use of a 
nonparametric IRT bootstrap method to correct for the 
bias. The bootstrap method works by estimating the item 
and the ability parameters under the assumption that 
the test measures a unidimensional composite. Then, 
examinee responses to all test items are simulated using 
the estimated unidimensional item-response functions. 
A test statistic, comparable to TL, is computed using 
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the simulated data, denoted TB. To reduce the random 
variation in TB, this procedure is repeated a number of 
times and the average, T—B, is used as the bias correction.

Recall, however, that dimensionality assessment 
can be accomplished using either an exploratory or a 
confirmatory approach with DIMTEST. An exploratory 
approach is ultimately data driven, meaning that the 
dimensional structure is first produced from the test data 
and then interpreted. Exploratory DIMTEST identifies 
the AT using the items with the highest factor loadings 
from an unrotated principal-axes factor analysis of the 
tetrachoric correlation matrix. This approach was used 
for the exploratory DIMTEST analyses reported in our 
study. A confirmatory approach can also be conducted 
where substantive hypotheses guide the formation of 
both the AT and the PT. With a confirmatory approach, 
different dimensional structures are first specified based 
on substantive considerations about the test data and then 
hypotheses are tested statistically. In the current study, the 
College Board test specifications and skill categories were 
used for the confirmatory DIMTEST analyses.

DETECT Overview
DETECT is also a nonparametric dimensionality 
assessment procedure, but this approach is designed to 
determine the multidimensional structure underlying 
test data (Zhang and Stout, 1999). DETECT identifies 
mutually exclusive, dimensionally homogeneous clusters 
of items using a genetic algorithm. Because the clusters 
of items are mutually exclusive, this procedure is most 
useful when approximate simple structure8 prevails in 
the test data. Unlike DIMTEST, DETECT can only be 
conducted in exploratory mode.

To specify these clusters, DETECT attempts to 
maximize the value of the DETECT index, D(P). This 
index quantifies the degree of multidimensionality present 
in P. The DETECT index is created by computing all item 
covariances after conditioning on the examinees’ scores 
using the remaining items. That is,

1

2
( ) [ ( , )]

( 1) ij i j TT
i j N

D P E Cov X X
n n

� �
� � �

� � �
� �  ,

where n is the number of dichotomous items on a test, P 
denotes the partitioning of n items into k clusters, ΘTT is the 
test composite, Xi and Xj are scores on items i and j, and 

1

,

1 .ij

if items i and j are in

the same cluster of P

otherwise
�

�
��� � ��
��

 

Although many different partitions can exist in a set of test 
data, P* serves as the partition that maximizes D(P) [herein 
denoted as D(P*) and also called DMax in the literature]. For 
instance, when the data are truly unidimensional, clusters of 
items will be found that are not particularly homogeneous. 
In this case, the within-cluster conditional covariance will 
be positive for some pairs of items and negative for other 
pairs of items resulting in a D(P*) index that is close to zero. 
If, however, the underlying structure of the data is truly 
multidimensional, then clusters of items will be found that 
have positive within-cluster conditional covariances and 
negative between-cluster conditional covariances, resulting 
in a D(P*) index that is greater than zero. Based on results 
from simulation studies, Kim (1994) suggested that when 
the D(P*) index is less than 0.10, the data can be considered 
unidimensional; an index between 0.10 and 0.50 can be 
considered a weak amount of dimensionality; an index 
between 0.51 and 1.00 can be considered a moderate amount 
of dimensionality; and an index greater than 1.00 can be 
considered a strong amount of dimensionality.

Another index that is often reported with D(P*) is rMax. 
To determine if the partition P*, which produced D(P*), is, 
in fact, the correct partition to produce a simple structure 
solution, the following ratio can be computed:

where , 
~

*

*
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r

D P
�  

~

1
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2
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�
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In other words, rMax is an index representing how well 
the data approximates simple structure by comparing 
the maximum value of the partition to the average 
of the absolute value for the conditional covariance 
across all item combinations. Values of r greater than 
0.80 suggest that the data displays approximate simple 
structure. Conversely, values of r less than 0.80 suggest 
that the data display complex structure (Kim, 1994). 
Simulation studies conducted by Kim (1994) and Zhang 
and Stout (1999) demonstrate that DETECT accurately 
identifies the correct partition when r is greater than 0.80, 
meaning the data possess a simple structure solution. 
Unfortunately, comprehensive studies have not been 
conducted to evaluate the accuracy of the DETECT 
partition when r is less than 0.80—in fact, the accuracy 
of the DETECT partition may be relatively poor when r is 
less that 0.80. This point was alluded to when Zhang and 
Stout (1999) claimed:

It is very important to note that DETECT is still 
informative when approximate simple structure 
fails to hold. In particular, it can still locate relatively 

8 For a two-dimensional test, when all items lie along the two dimensional coordinate axes, the test displays simple structure. A complete description of 
the five conditions required to achieve Thurstone’s definition of simple structure is presented in McDonald (1999, pp. 179–180). Items can also lie in a 
narrow sector around the two-dimensional coordinate axes. In this case, the test displays approximate simple structure. When items lie in space through-
out the two-dimensional coordinate axes (i.e., items measure a range of skills in the Ѳ1 Ѳ2 composite) the test displays complex structure.
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dimensionally homogeneous clusters; however, there 
is no longer a unique ‘best’ or ‘correct’ partition to be 
found by DETECT because there will be little to no 
separation between some of the clusters found [italics 
added]. (p. 215)

This lack of separation that results in a nonunique 
partition implies that the clusters produced across 
samples may be highly unreliable and, therefore, difficult 
to interpret because the clusters are not replicable across 
samples. This outcome is problematic because unreliable 
statistical results that are difficult to interpret will not lead 
to an increased understanding of the multidimensional 
structure underlying the test data.

Nonlinear Factor-Analysis Overview
A nonlinear factor-analytic approach can also be used 
to model multidimensional data (McDonald, 1967, 1997, 
1999). The common factor parameterization for the 
factor-analytic model is defined as:

yi = λilθ1 + …λikθk + δi,

where yi is conceptualized as a continuous latent response 
propensity meaning that for each item score there exists 
an underlying item-specific threshold that corresponds 
to the difficulty level of the item where the examinee 
must exceed this threshold to get the item correct; 
λi = [λ1, λ2,…, λk] is the factor-loading vector; θ = (θ1, θ2,…θk)
is the examinee trait vector having mean 0 and covariance  
Φ; and δi is a residual term distributed (0,Ψi). The model 
assumes for each item i there is a latent ability that is 
required to correctly answer the item. This latent ability 
is assumed to be continuous and normally distributed. 
Taken together, each item score is determined by the 
location of yi relative to a fixed item threshold of τi such 
that an examinee’s response, Ui, can be expressed as: 

Ui = 1 if yi ≥ τi and Ui = 0 if yi < τi.

The proportion of examinees correctly responding to item 
i (i.e., the p-value or difficulty level) can be expressed as 
the proportion of area under a normal curve beyond the 
threshold τi as pi = N(τi), where N denotes the normal 
ogive function.

The latent trait parameterization of the k-dimensional 
normal ogive model9 can also be formulated and linked, 
conceptually, to the common factor parameterization, as 
follows:

� � � � � �/
1 0 0 1 1 2 21| ...i k i i i i i ik kP U N N� � � � � � � � � � � �� � � � � � � �K  
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In these three equations, N is the normal curve, θ is 
the latent ability, βi0 is the difficulty parameter, βi is the 
discrimination parameter, ψi is the unexplained item 
variance or 1 minus the communality, given as:
Ψi = 1 – λ/

i Φ λi,
and, Φ  is the covariance matrix of latent abilities.

One advantage of using the common factor 
parameterization of the multidimensional model is that it 
allows one to estimate the correlation between factors that 
underlie test performance. For the two-factor solution, 
where θ1 and θ2 are the two latent abilities, r(θ1,θ2) = ϕ12. 
Then, the underlying composite is scaled so that Ψi can be 
expressed as:

1221
2
2

2
1 21 ������ ����i  .

Although other computer programs are available for 
estimating multidimensional item parameters for 
dichotomously scored data, NOHARM is frequently 
used. NOHARM is the acronym for the normal ogive 
by harmonic analysis robust method. The program was 
written by Fraser (1988) to fit the unidimensional and 
multidimensional normal ogive models of latent trait 
theory, as presented by McDonald (1967). This program 
uses a nonlinear factor analytic approach to estimate 
item parameters in either an exploratory or confirmatory 
mode. If the underlying dimensional structure is unclear, 
then the exploratory mode of NOHARM would be used. 
If a particular dimensional structure is hypothesized, 
then the confirmatory mode should be used.

NOHARM estimates the latent trait parameters for 
the k-dimensional normal ogive model using a two-
step approach. First, the threshold parameters, βi0, are 
estimated using a closed form expression by solving the 
sample analog of k-dimensional normal ogive model. 
Second, the discrimination parameters, βi, are estimated 
using unweighted least squares (ULS) by minimizing the 
expression

2)( r
ij

ji
ijpq ��

�

��  ,

where πr
ij is the rth-term approximation of a normalized 

Hermite-Tchebycheff polynomial estimation of the 
proportion answering items i and j correctly, using a 
quasi-Newton algorithm. The main advantage of using a 
ULS procedure is that it can estimate the parameters for 
a large number of items because matrix inversion is not 
required. The main disadvantage of using a ULS procedure 
is that there are no direct standard errors for the parameter 

9 Some researchers also represent the latent trait parameterization of the multidimensional model as: 1 1 2 21.7( )1 2{ 1 | , }
1

1 a a dP Ui e � �� � � � �� �
�

 
,

where  a1 corresponds to λ1, the discrimination parameter for the  θ1 trait, a2 corresponds to λ2, the discrimination parameter for the θ2 trait, d 
corresponds to a location parameter, and 1.7 is the scaling factor to make the logistic and normal ogive models equivalent.
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estimates and, as a result, few indices for assessing the 
goodness of fit between the model and the data.10

To summarize, a multidimensional data structure can 
be identified and modeled using a nonlinear factor analytic 
approach. The model can be presented as either the common 
factor or the latent trait parameterization. The main advantage 
in using the common factor parameterization stems from the 
interpretative conventions that can be adopted from factor 
analysis to interpret the multidimensional solutions. For 
example, the λs estimated by NOHARM can be interpreted as 
factor loadings, which represent the correlation between the 
item-response propensity and the corresponding dimension. 
The ψs can be interpreted as the item uniqueness, which 
represents the proportion of variance in the ys not accounted 
for by the dimensions. The τs can be interpreted as the inverse 
normal transformation of the item difficulty level, meaning  
τi = N-1(pi). Thus, positive τis represent easy items and 
negative τis represent difficult items. We used the common 
factor parameterization, along with conventions used 
commonly with factor analysis (Preacher and MacCallum, 
2003), to identify and interpret dimensions underlying the 
student response data for the SAT mathematics and critical 
reading items.

Results
Overview
Dimensionality analyses can be conducted using either 
an exploratory or a confirmatory approach. With an 
exploratory approach, analyses are conducted to identify 
the optimal number of dimensions that can be extracted 
from the data. An exploratory analysis is often conducted 
when few hypotheses or substantive explanations are 
available to describe the underlying structure of the data. 
The outcomes from an exploratory analysis are expected 
to yield information and, possibly, insights about the 
relationship of the items to the dimensions. Unfortunately, 
this relationship is often difficult to interpret because 
the analysis lacks a substantive framework to guide the 
interpretative process, which is a major disadvantage of 
an exploratory approach. We begin our study with a series 
of exploratory analyses as a first attempt at identifying the 
dimensional structure of the SAT. The exploratory results 
are reported in Part #1 of the Results section.

With a confirmatory approach, constraints are placed 
on the data to evaluate specific models. Then, fit statistics 

are used to evaluate the residual covariance, after modeling 
the data, to see if any systematic variation among the 
variables remains. Often, the pattern of the parameters 
relative to the dimensions is specified because hypotheses 
or substantive explanations are available to describe the 
structure of the data. Thus, the purpose of the analysis 
is to test these hypotheses or substantive explanations. 
The advantage of this approach stems from the logic of 
hypothesis testing where a substantive explanation is used 
to generate hypotheses and then a statistical analysis is 
used to test the hypotheses. Each confirmatory analysis, 
therefore, provides a test of the proposed hypotheses 
(Ackerman, Gierl, and Walker, 2003; Walker and Gierl, 
2004). But this important advantage comes at a price—an 
articulate substantive framework must be available to 
describe the dimensional structure of the data and guide 
the analysis. Because diagnostic assessments are designed 
to identify and report the cognitively based symptoms 
associated with diverse test performance, the dimensions 
we identify must contain items that can be linked directly 
and systematically to these cognitively based symptoms. 
Thus, two different substantive frameworks were used 
to guide the confirmatory dimensionality analyses: the 
College Board test specifications and skill categories. The 
confirmatory results are reported in Part #2 of the Results 
section.

Part #1: Exploratory 
Dimensionality Results
Applying exploratory DIMTEST to the mathematics 
and critical reading composite (i.e., combining the items 
across sections) resulted in rejections11 with small p-
values across all three samples, as shown in Table 2 (under 
the heading “Composite”). This outcome indicates the 

10 Despite this important disadvantage, we conclude that nonlinear factor analysis, as implemented with the computer program NOHARM, is the best 
dimensionality procedure for our SAT analyses because we want parameter estimates for a large number of items. Alternative estimation procedures, 
such as maximum likelihood or generalized least squares, are used in computer programs such as LISREL and MPlus. These alternative procedures yield 
direct standard errors along with a host of goodness-of-fit indices. However, these alternative procedures also require inverting large data matrices and 
seldom work well with more than 20 test items.
11 A conventional alpha level of 0.05 was used to interpret the results in this study. In some cases, however, we interpret a result as statistically significant 
when the observed alpha level is close to critical alpha level (i.e., a + 0.015) because we are attempting to find systematic patterns across samples at this 
early stage in our research program. An outcome is considered systematic if we can replicate the result in at least two samples.

Table 2
Exploratory DIMTEST Results for Composite, 
Mathematics, and Critical Reading Sections

Book

Composite Mathematics Critical Reading

T p T p T p

2a 11.3583 0.0000 4.4371 0.0000 3.8565 0.0001

2c 12.3312 0.0000 3.7953 0.0001 3.2162 0.0006

5 11.2085 0.0000 2.4738 0.0067 4.3285 0.0000
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data are not unidimensional. The composite provides 
an important baseline for the first exploratory analysis 
because the mathematics and critical reading items, 
together, clearly measure a multidimensional construct. 
This multidimensional construct can be identified with 
exploratory DIMTEST.

When DETECT was applied to the data (see Table 
3 under the heading “Composite”), the D(P*) index 
(herein called DETECTMax) ranged from 0.4062 to 0.4178, 
indicating a weak amount of dimensionality, according 
to Kim’s (1994) classification. However, the rMax index 
ranged from 0.8069 to 0.8207, indicating that the data, 
while displaying a “weak” amount of dimensionality, 
still displayed approximate simple structure for the two 
test sections across all three samples. In fact, when 
the exploratory DETECT clusters for mathematics and 
critical reading were produced, the items were partitioned 
perfectly by section, meaning that the mathematics items 
were separated from the critical reading items for two of 
the three samples (the third sample contained only minor 
item misclassifications).

Next, exploratory DIMTEST analyses were conducted 
separately using items from the mathematics and critical 
reading sections. For mathematics, DIMTEST rejected 
the null hypothesis producing small p-values across all 
three samples, indicating the data are not unidimensional 
(see Table 2 under “Mathematics”). When DETECT was 
applied to the data (see Table 3 under “Mathematics”), 
DETECTMax ranged from 0.1346 to 0.1419, indicating a 
weak amount of dimensionality. The rMax index was also 
relatively low, ranging from 0.4238 to 0.4444, indicating 
the data displayed complex structure across all three 
samples. The number of DETECT clusters in mathematics 
ranged from 4 to 5 across the three samples.

For critical reading, DIMTEST again rejected the 
null hypothesis producing small p-values across all three 
samples, indicating the data are not that unidimensional 
(see Table 2 under “Critical Reading”). When DETECT was 
applied to the data (see Table 3 under “Critical Reading”), 
DETECTMax ranged from 0.1918 to 0.1951, indicating a 
weak amount of dimensionality. The rMax index was also 
relatively low, ranging from 0.4788 to 0.4997, indicating 
that the data displayed complex structure across all three 

samples. The number of DETECT clusters in critical 
reading ranged from 4 to 5 across the three samples.

To further interpret the DETECT clusters, we adopted 
the analysis algorithm proposed recently by Nandakumar 
and Ackerman (2004) for modeling test data. They describe 
their algorithm, as follows:
Step 1. Use DIMTEST to determine if dimensionality, 

d, underlying test data is essentially 1.
Step 2. If d=1, then fit a unidimensional model to the 

data. Stop.
Step 3. If d>1, then investigate if test items can be 

decomposed into unidimensional clusters using 
DETECT.

Step 4. Test each DETECT cluster using DIMTEST to 
determine if d=1.

Step 5. Combine clusters, if necessary, based on expert 
opinion of item content of the AT of DIMTEST. 
Again, test hypothesis d=1.

Step 6. If d=1, go to step 2. If d>1 for any of the clusters, 
either delete the items from the test or use the 
multidimensional model.

We iterated through these steps until we identified 
dimensionally homogeneous item clusters in mathematics 
and critical reading across each sample. That is, 
DIMTEST was first used to evaluate the dimensionality 
of each cluster and, if the cluster was shown to possess 
multidimensionality, DETECT was applied again to the 
data to produce a smaller cluster. This cycle was continued 
until either the DIMTEST result was not statistically 
significant or the item cluster contained four items or less 
(Nandakumar and Ackerman, 2004).

The results for mathematics are displayed in Figures 1 to 
3. Important differences in the final cluster solutions were 
found across the samples. Using Book 2a, 24 independent 
clusters were identified in three levels (meaning that the 
number of levels that contain at least 1 independent cluster 
is three—the number of levels is presented in the left 
column of each figure). The smallest cluster contained 1 
item and the largest cluster contained 8 items. Using Book 
2c, 17 independent clusters were identified in three levels. 
The smallest cluster contained 1 item and the largest 
cluster contained 18 items. Using Book 5, 17 independent 
clusters were identified in three levels. The smallest 
cluster contained 1 item and the largest cluster contained 
7 items. These results reveal the final independent clusters 
across forms were not similar and, as a result, systematic 
patterns were not apparent. Thus, these results would 
be difficult, if not impossible, to interpret because the 
clusters are inconsistent across the three mathematics 
forms. This outcome is problematic because unreliable 
statistical results that are difficult to interpret will not lead 
to an increased understanding of the multidimensional 
structure underlying the test data.

Similar results were found for the critical reading 
items, as displayed in Figures 4 to 6. Using Book 2a, 

Table 3
DETECT Results for Composite, Mathematics, and 
Critical Reading Sections

Book

Composite Mathematics Critical Reading

DETECTMax r Index DETECTMax r Index DETECTMax r Index

2a 0.4178 (2) 0.8192 0.1347 (4) 0.4322 0.1940 (4) 0.4844

2c 0.4146 (2) 0.8207 0.1419 (5) 0.4444 0.1951 (4) 0.4997

5 0.4062 (2) 0.8069 0.1346 (4) 0.4238 0.1918 (5) 0.4788

Note: The number of clusters is in the DETECTMax columns in paren-
theses.
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Figure 1.  The decomposed DETECT clusters using data from SAT Mathematics Book 2a.

Figure 2.  The decomposed DETECT clusters using data from SAT Mathematics Book 2c.

Figure 3.  The decomposed DETECT clusters using data from SAT Mathematics Book 5.
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Figure 4.  The decomposed DETECT clusters using data from SAT Critical Reading Book 2a.

Figure 5.  The decomposed DETECT clusters using data from SAT Critical Reading Book 2c.

Figure 6.  The decomposed DETECT clusters using data from SAT Critical Reading Book 5.
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27 independent clusters were identified in three levels. 
The smallest cluster contained 1 item and the largest 
cluster contained 9 items. Using Book 2c, 12 independent 
clusters were identified in three levels. The smallest 
cluster contained 1 item and the largest cluster contained 
24 items. Using Book 5, 25 independent clusters were 
identified in four levels. The smallest cluster contained 1 
item and the largest cluster contained 11 items. As with 
mathematics, the final independent clusters in critical 
reading were dissimilar and systematic patterns were 
not apparent. Again, these results would be difficult to 
interpret because the clusters are inconsistent across the 
three critical reading forms.

Initially, these results were surprising to us. We expected 
a much higher degree of cluster consistency across the 
three forms. However, it is important to remember that 
DETECT was created to determine the multidimensional 
structure underlying test data that display approximate 
simple structure (Zhang and Stout, 1999; see also Stout 
et al., 1996, pp. 350–351). No systematic studies have 
been conducted to evaluate the accuracy of the DETECT 
partition when the data display differing degrees of complex 
structure (i.e., a range of rMax values below 0.80).12 Because 
DETECT appears to yield unreliable clusters when data 
display complex structure—as is the case with the SAT 
mathematics and critical reading items in this study—it is 
difficult to interpret the clusters substantively. Therefore, 
to identify a more consistent and, hopefully, interpretable 
multidimensional structure, the data were fit to exploratory 
multidimensional models using NOHARM.

We began by computing the results for a series of 
well-known decision rules used in linear factor analysis 
for determining the number of dimensions because 
NOHARM requires the user to specify the expected 
number of dimensions, even with an exploratory 
approach. Because many different approaches exist for 
determining how many dimensions to retain in a linear 
factor analysis, we applied three widely used decision 
rules, including Cattell’s Scree test, the Kaiser rule, 
and the minimum average partial (MAP) method. The 
use of different decision rules is recommended when 
attempting to determine the number of dimensions 
to retain in an exploratory analysis (Preacher and 
MacCallum, 2003).

Cattell’s Scree test suggests that if a dimension is 
significant it will have a large eigenvalue. The magnitude 
of the eigenvalues can be evaluated graphically by plotting 
each value. Those eigenvalues that are similar in a plot 
will form a straight line. The number of eigenvalues that 
fall above the line are considered the dimensions that 
account for a majority of the variability in the analysis and, 
therefore, indicate the number of dominant dimensions. 

The Kaiser rule states that the dimensionality for a test 
equals the number of factors where at least three factor 
loadings equal or exceed 0.30 on any single dimension. 
Thus, the number of dimensions can be evaluated by 
assessing the magnitude of the factor loadings in the 
varimax solution. The MAP method is based on an 
evaluation of the partial correlation matrices. Initially, 
the average squared correlations in the off diagonal of 
the tetrachoric correlation matrix are calculated. The first 
factor is partialed out of the tetrachoric correlation matrix 
of the observed variables and the average of the squared 
partial correlations in the off diagonals of the resulting 
partial correlation matrix is calculated. Then, the first 
and second factors are partialed out of the tetrachoric 
correlation matrix of the observed variables. Likewise, the 
average of the squared partial correlations is computed. 
After the minimum average squared partial correlation 
is obtained, no additional components are extracted. 
The minimum, which equals the number of dimensions, 
is reached when the residual matrix directly resembles 
an identity matrix suggesting that all the off diagonal 
elements are close to zero. 

The results for the three decision rules are presented 
in Table 4. The number of dimensions for mathematics 
was consistent across forms at two. Therefore, the number 
of dimensions that underlie the SAT mathematics items 
could range from two to five when the factor-analytic and 
DETECT (see Table 3) results are considered together. The 
number of dimensions for critical reading ranged from 
two to three using the three decision rules. Therefore, 
the number of dimensions that underlie the SAT critical 
reading items could range from two to five when the factor-
analytic and DETECT results are considered together.

To determine which model provided the most 
parsimonious fit, all four models were fit to the 
mathematics and critical reading items across samples. 
To evaluate goodness of fit, NOHARM reports Tanaka’s 
(1993) unweighted least squares goodness-of-fit index 
and the root mean square residual (RMSR). There are no 
interpretative guidelines for Tanaka’s index, other than a 
higher value implies better model fit. A RMSR equal to 

12 We are currently investigating this problem in a simulation study designed to evaluate cluster consistency under differing degrees of simple and com-
plex structure.

Table 4
Results for Three Popular Decision Rules Used to 
Determine the Number of Dimensions Underlying 
the SAT Mathematics and Critical Reading Items

Book

Mathematics Critical Reading

Scree Kaiser MAP Scree Kaiser MAP

2a 2 2 2 3 3 3

2c 2 2 2 3 3 2

5 2 2 2 3 3 2
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or less than four times the reciprocal of the square root 
of the sample size implies good model fit (Fraser, 1988). 
Because the sample size ranged from 2,202 to 2,443 
across the mathematics and critical reading sections, we 
interpreted the most conservative RMSR value of 0.0809 
to indicate good model fit. The fit indices for the 2-, 3-,  
4-, and 5-dimensional models in mathematics and critical 
reading are presented in Tables 5 and 6, respectively.

For mathematics, the 2-dimensional model provides 
the most parsimonious fit to the three data sets with little 
change in either Tanaka’s index or the RMSR when all 
models are compared. Therefore, we conclude that the 
2-dimensional model provides the best description of 
dimensional structure for the SAT mathematics data using 
exploratory analyses. The promax-rotated solution using 
the common factor parameterization for the mathematics 
Book 2a data is presented in Table 7. The correlation 
between the dimensions is moderate at 0.686.

For critical reading, the 3-dimensional model provides 
the most parsimonious fit to the three data sets with a 
noteworthy change in Tanaka’s index and the RMSR between 
the 2- and 3-dimensional models but little change between 
the 3-dimensional solution and the 4- or 5-dimensional 
models. Therefore, we conclude that the 3-dimensional 
model provides the best description of dimensional structure 
for the SAT critical reading data using exploratory analyses. 
The promax-rotated solution using the common factor 
parameterization for the critical reading Book 2a data is 
presented in Table 8. The correlations between dimensions 
were moderate, ranging from 0.655 to 0.726.

Table 5
NOHARM Fit Indices for 2-, 3-, 4-, and 5-
Dimensional Models in Mathematics

Book

Number of Factors

2 3 4 5

Tanaka RMSR Tanaka RMSR Tanaka RMSR Tanaka RMSR

2a 0.994 0.004 0.996 0.003 0.996 0.003 0.997 0.003

2c 0.994 0.004 0.995 0.003 0.996 0.003 0.996 0.003

5 0.994 0.004 0.995 0.003 0.996 0.003 0.997 0.003

Note: The indices for the most parsimonious model are in bold.

Table 7
Promax Rotated 2-Dimensional Exploratory Solution 
for Mathematics Book 2a

Item
Dimension

1  2
5 0.902 -0.291

22 0.818 -0.111
3 0.818 -0.192
1 0.787 -0.194

23 0.759 -0.084
2 0.757 -0.187
8 0.737 -0.068

45 0.689 0.035
21 0.675 -0.103
39 0.655 0.131

9 0.646 0.035
4 0.637 -0.056

46 0.632 0.130
37 0.611 -0.011
26 0.583 0.189
49 0.577 0.065
48 0.575 0.253

6 0.530 -0.064
13 0.515 0.183

7 0.501 0.144
11 0.499 0.196
29 0.495 0.197
38 0.481 0.011
28 0.448 0.308
51 0.434 0.408
12 0.424 0.296
25 0.418 0.275
30 0.408 0.238
41 0.405 0.152
50 0.393 0.431
14 0.382 0.129
24 0.376 0.253
27 0.361 0.290
52 0.320 0.552
43 0.238 0.288
32 0.237 0.269
15 0.197 0.510
40 0.195 0.340
31 0.189 0.352
53 0.179 0.577
42 0.154 0.415
33 0.109 0.525
10 0.051 0.471
17 0.048 0.529
54 -0.007 0.934
18 -0.011 0.672
36 -0.032 0.519
16 -0.035 0.574
44 -0.111 0.596
34 -0.135 0.774
19 -0.244 0.866
35 -0.246 0.645
20 -0.322 0.706

Note: The item with the highest factor loading for each dimension is 
in bold.

Item
Dimension Correlation

1 2
  1 1.000
  2 0.686 1.000

Table 6
NOHARM Fit Indices for 2-, 3-, 4-, and 5-
Dimensional Models in Critical Reading

Book

Number of Factors

2 3 4 5

Tanaka RMSR Tanaka RMSR Tanaka RMSR Tanaka RMSR

2a 0.989 0.005 0.992 0.004 0.994 0.003 0.994 0.004

2c 0.989 0.005 0.992 0.004 0.993 0.004 0.994 0.004

5 0.990 0.005 0.993 0.004 0.994 0.004 0.994 0.004

Note: The indices for the most parsimonious model are in bold.
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Part #2: Confirmatory 
Dimensionality Results
Test Specifications
Overview
The first set of confirmatory analyses used the College 
Board test specifications as the organizing principle to 
guide the assessment of dimensionality. Test specifications 
outline the achievement domain and help test developers 
obtain a representative sample of items from this domain. 
The specifications also guide item writing and help structure 
the final form of the test based on the content domain that 
the test is designed to measure. Thus, a thorough analysis 
of the content areas measured by the test may help identify 
a subset of items that measure distinct dimensions. Two 
categories in the test specifications were used in the first 
confirmatory analysis for both mathematics and critical 
reading because these categories highlight important item 
features according to the test developers, they are readily 
available and easy to use, and they can guide interpretation. 
It would also be easy for the College Board to create 
subscores based on the test specification categories.

Mathematics
The two categories in the College Board mathematics 
section specifications used for our dimensionality analyses 
were content area and item type. The first category, 
content area, included four areas: algebra, arithmetic, 
geometry, and miscellaneous. Content areas reflect the 
curricular domain measured by the SAT, which is tied 
to the examinee’s program of studies. By adequately 
representing the content areas in the test specifications, 
developers attempt to establish the validity of test score 
inferences based on content. The second category, item 
type, measured three areas: comprehension, nonroutine/
insightful, and routine. Item type is intended to reflect 
the nature of the problems examinees are expected to 
solve on the test. By adequately representing the item 

Table 8
Promax Rotated 3-Dimensional Exploratory Solution 
for Critical Reading Book 2a

Item
Dimension

1 2 3
1 0.910 -0.071 -0.185

25 0.829 -0.312 0.188
2 0.772 0.061 -0.169

10 0.770 -0.336 0.100
49 0.671 -0.070 0.104
44 0.633 -0.060 0.074
26 0.609 0.125 -0.072

3 0.581 0.125 -0.149
4 0.527 0.015 -0.012

33 0.525 0.194 -0.035
16 0.510 -0.025 0.091
51 0.505 0.046 0.144

9 0.496 -0.069 0.009
15 0.469 0.166 -0.036
17 0.465 -0.025 0.185
28 0.455 0.157 -0.065
46 0.428 0.188 -0.033
14 0.421 0.173 -0.019
19 0.419 0.081 0.240
12 0.405 0.333 -0.148
35 0.399 0.236 0.048

6 0.395 0.288 -0.149
13 0.362 0.137 0.073
29 0.359 0.400 -0.129
60 0.336 -0.044 0.465
58 0.335 -0.139 0.539
18 0.321 0.115 0.076

5 0.318 0.178 -0.010
37 0.313 0.184 0.123
27 0.301 0.066 0.175
31 0.275 0.027 0.175
38 0.269 0.470 -0.010
23 0.269 0.345 0.140
61 0.263 0.142 0.342
20 0.249 0.430 0.062
34 0.243 0.444 -0.012
45 0.241 0.066 0.157
52 0.204 0.133 0.182
53 0.196 0.152 0.220
55 0.190 0.246 0.167
50 0.189 0.568 -0.174
59 0.179 0.131 0.443
22 0.149 0.457 0.014
48 0.149 0.388 -0.157
56 0.143 0.224 0.167
54 0.137 0.220 -0.028
11 0.109 0.592 -0.187

7 0.092 0.600 -0.250
30 0.073 0.422 -0.044
36 0.064 0.359 0.198
65 0.023 -0.078 0.914
41 0.018 0.402 0.223
63 0.005 0.033 0.702
66 -0.005 0.352 0.431
24 -0.023 0.541 0.091
62 -0.054 -0.021 0.721
42 -0.069 0.362 0.331
64 -0.082 0.428 0.202
39 -0.091 0.625 -0.009
47 -0.115 0.516 -0.029

Table 8 (continued)

Item
Dimension

1 2 3
21 -0.153 0.591 -0.004
57 -0.167 0.525 0.003
40 -0.197 0.747 0.016

8 -0.206 0.768 -0.150
43 -0.225 0.467 0.219
32 -0.239 0.587 -0.012
67 -0.239 0.540 0.277
Note: The item with the highest factor loading for each dimension is in bold.

Item
Dimension Correlations 

1 2 3
1 1.000
2 0.726   1.000
3         0.703 0.655 1.000



15

type in the test specifications, developers attempt to 
establish the validity of the test score inferences based the 
examinees’ problem-solving skills.

Using content area as the organizing principle, 
confirmatory DIMTEST rejected three content areas 
across samples (see Table 9). That is, DIMTEST rejected 
the null hypothesis for one sample in algebra (if we 
consider the p-value of 0.0585 in the Book 2a sample as 
statistically significant), two samples in arithmetic, three 
samples in geometry, and two samples in miscellaneous. 
In other words, if we interpret the results from Book 2a as 
indicative of multidimensionality and attempt to replicate 
the result across samples, then our findings suggest that 
arithmetic, geometry, and miscellaneous are dimensionally 
distinct content areas, but that algebra is not.

Using item type as the organizing principle, 
confirmatory DIMTEST rejected the null hypothesis 
for the nonroutine/insightful items across two samples 
(see Table 10). Thus, nonroutine/insightful items are 
dimensionally distinct from comprehension and routine 
items, whereas comprehension and routine items are not 
distinct from one another.

NOHARM was then used to estimate the parameters for 
the 4-dimensional model using the items associated with 
content area. Only the content-area model was fit to the 
data because two of the three item-type dimensions were 
not found to be dimensionally distinct from one another. 
The fit indices for the 4-dimensional model across the three 
samples are shown in Table 11. Tanaka’s index, which has no 
established interpretive guidelines, was large and comparable 

across samples, ranging from 0.988 to 0.989. The RMSR 
was small and comparable across samples at 0.005. Recall, 
Fraser (1988) suggested an RMSR equal to or less that four 
times the reciprocal of the square root of the sample size 
implies good model fit. Using Fraser’s suggested outcome, 
the RMSR implies good model fit across all three samples. 
The common factor parameter estimates for the Book 2a 
data are presented in Table 12. The correlations between the 
dimensions were high, ranging from 0.946 to 1.000.13

Critical Reading
Two categories in the College Board test specifications for 
critical reading were used for our dimensionality analyses. 
The first category was item format. Two item formats were 
measured: sentence completion and critical reading. The 
second category was reading passage, which only applied 
to the critical reading items given these items were divided 
into short and long reading passages. Eight passages were 
presented, and each passage contained a different number 
of test items. Passages 1 and 2 contained 2 items, passage 3 
contained 12 items, passage 4 contained 13 items, passages 
5 and 6 contained 2 items, passage 7 contained 6 items, and 
passage 8 contained 9 items.14 Taken together, the sentence 
completion items and the reading passages are designed to 
measure examinees’ ability to identify genre, relationships 
among parts of text, cause and effect, rhetorical devices, and 
comparative arguments in passages taken from the natural 
sciences, humanities, social science, and literary fiction. 
By adequately representing the item formats and reading 
passages, test developers are attempting to establish the 
validity of the test score inferences based on the examinees’ 
verbal and critical reading skills.

Using item format as the organizing principle, 
confirmatory DIMTEST rejected the null hypothesis 
producing small p-values across all three samples indicating 
the data are not unidimensional (see Table 13). Next, reading 
passage was used as the organizing principle. Confirmatory 
DIMTEST rejected the null hypothesis for all passages across 
samples, except passage 5, indicating the items associated 

Table 9
Confirmatory DIMTEST Results by Mathematics 
Content Area

Book

Algebra Arithmetic Geometry Miscellaneous

T p T p T p T p

2a 1.5673 0.0585 1.8777 0.0302 2.8976 0.0019 1.8090 0.0352

2c 0.2539 0.3998 1.4623 0.0718 3.7754 0.0001 1.7082 0.0438

5 0.4281 0.3343 1.8288 0.0337 2.6734 0.0038 1.0722 0.1418

Table 10
Confirmatory DIMTEST Results by Mathematics 
Item Type

Book

Comprehension Nonroutine/Insightful Routine

T p T p T p

2a -1.2697 0.8979 1.9432 0.0260 0.0840 0.4665

2c -1.3190 0.9064 0.2689 0.3940 1.1669 0.1216

5 0.3581 0.3601 2.2614 0.0119 0.7496 0.2268

Table 11
NOHARM Fit Indices for Confirmatory Content-
Based 4-Dimensional Model in Mathematics 
Across Samples

Book

Fit Index

Tanaka RMSR

2a 0.989 0.005

2c 0.988 0.005

5 0.988 0.005

13 Due to estimation error, some of the correlations meet or exceeded 1.0. Fortunately, the errors appear to be small as the overestimated correlations are 
close to the upper bound of 1.0 in all analyses.
14 The passages are ordered by section according to the nSAT data file we received. Thus, in this report, passages 1, 2, and 3 are passages 1, 2, and 3 of 
Section 1, respectively; passage 4 is the paired passage in Section 3; passages 5, 6, 7, and 8 are passages 1, 2, 3, and 4 in Section 2, respectively.
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Table 12
Four-Dimensional Solution for Confirmatory 
Content-Based Mathematics Model Using Book 2a

Item
Dimension

1 2 3 4
51 0.772 0.0 0.0 0.0
39 0.743 0.0 0.0 0.0
45 0.696 0.0 0.0 0.0
23 0.666 0.0 0.0 0.0
12 0.661 0.0 0.0 0.0

9 0.656 0.0 0.0 0.0
29 0.643 0.0 0.0 0.0
47 0.638 0.0 0.0 0.0

3 0.638 0.0 0.0 0.0
1 0.627 0.0 0.0 0.0
7 0.605 0.0 0.0 0.0

27 0.595 0.0 0.0 0.0
21 0.574 0.0 0.0 0.0
33 0.564 0.0 0.0 0.0
19 0.557 0.0 0.0 0.0
17 0.510 0.0 0.0 0.0
43 0.478 0.0 0.0 0.0
44 0.423 0.0 0.0 0.0
35 0.341 0.0 0.0 0.0
26 0.0 0.726 0.0 0.0
53 0.0 0.697 0.0 0.0

8 0.0 0.659 0.0 0.0
11 0.0 0.650 0.0 0.0
15 0.0 0.637 0.0 0.0
49 0.0 0.611 0.0 0.0
30 0.0 0.599 0.0 0.0
24 0.0 0.581 0.0 0.0
41 0.0 0.521 0.0 0.0
14 0.0 0.478 0.0 0.0

6 0.0 0.461 0.0 0.0
36 0.0 0.438 0.0 0.0
54 0.0 0.0 0.913 0.0
48 0.0 0.0 0.777 0.0
50 0.0 0.0 0.763 0.0
28 0.0 0.0 0.704 0.0
13 0.0 0.0 0.659 0.0

5 0.0 0.0 0.658 0.0
25 0.0 0.0 0.646 0.0
18 0.0 0.0 0.598 0.0
37 0.0 0.0 0.596 0.0

2 0.0 0.0 0.584 0.0
34 0.0 0.0 0.568 0.0
42 0.0 0.0 0.513 0.0
40 0.0 0.0 0.488 0.0
16 0.0 0.0 0.472 0.0
32 0.0 0.0 0.465 0.0
52 0.0 0.0 0.0 0.808
46 0.0 0.0 0.0 0.723
38 0.0 0.0 0.0 0.478
31 0.0 0.0 0.0 0.495
22 0.0 0.0 0.0 0.706
20 0.0 0.0 0.0 0.339
10 0.0 0.0 0.0 0.468

4 0.0 0.0 0.0 0.582
Note: The items in the table are sorted by content area so the factor 
loadings are easier to interpret. Dimensions 1 through 4 correspond 
to algebra, arithmetic, geometry, and miscellaneous, respectively.

Item
Dimension Correlations

1 2 3 4
  1     1.000
  2 0.987   1.000
  3     0.974   0.970   1.000
  4     1.001 0.982   0.946   1.000

Table 13
Confirmatory DIMTEST Results by Critical Reading 
Item Format 
Book T p

2a 6.0065 0.0000
2c 9.3176 0.0000
5 7.8681 0.0000
Note: The sentence completion items served as the AT and the criti-
cal reading items served as the PT.

Table 14
Confirmatory DIMTEST Results by Reading Passage 

Book
Passage 1 Passage 2 Passage 3 Passage 4

T p T p T p T p
2a 2.9267 0.0017 2.9879 0.0014 3.3044 0.0005 6.0956 0.0000
2c 3.2240 0.0006 1.8548 0.0318 4.0946 0.0000 3.5783 0.0002
5 2.7549 0.0029 1.8719 0.0306 6.1057 0.0000 5.0210 0.0000

Book
Passage 5 Passage 6 Passage 7 Passage 8

T p T p T p T p
2a 0.2768 0.6090 2.4242 0.0077 4.2212 0.0000 3.8733 0.0001
2c 0.2164 0.4143 3.1612 0.0008 3.6696 0.0001 7.5926 0.0000
5 0.7026 0.2411 1.7746 0.0380 4.0021 0.0000 6.2434 0.0000
Note: Each reading passage served as a separate AT, with the remain-
ing items serving as a PT.

Table 15
Confirmatory DIMTEST Results by Critical Reading 
Item Format and Passage 

Book

Sentence 
Completion (19) Passage 1 (2) Passage 2 (2)

T p T p T p

2a 6.0065 0.0000 1.8683 0.0309 3.0394 0.0012
2c 9.3176 0.0000 2.6443 0.0041 1.2864 0.0992
5 7.8681 0.0000 2.4838 0.0065 2.2081 0.0136

Book

Passage 3 (12) Passage 4 (13) Passage 5 (2)

T p T p T p

2a 5.9788 0.0000 7.2589 0.0000 -0.6159 0.7310
2c 5.3864 0.0000 4.3784 0.0000 -0.6190 0.7320
5 6.5778 0.0000 5.3429 0.0000 0.9707 0.1659

Book

Passage 6 (2) Passage 7 (6) Passage 8 (9)

T p T p T p

2a 2.6082 0.0046 5.3984 0.0000 7.3766 0.0000
2c 2.5663 0.0051 4.3802 0.0000 8.7440 0.0000
5 2.1970 0.0140 4.7473 0.0000 8.4999 0.0000
Note: Each dimension served as a separate AT, with the remaining 
items serving as a PT. The number of items measuring each dimen-
sion is in parentheses on the top of the column. 

Table 16
NOHARM Fit Indices for Confirmatory Item Format 
and Passage 9-Dimensional Model in Critical 
Reading Across Samples

Book

Fit Index

Tanaka RMSR

2a 0.988 0.005

2c 0.988 0.005

5 0.990 0.005
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with each reading passage measure a distinct dimension 
(see Table 14). This result is consistent with previous 
research indicating that reading comprehension passages 
tend to assess distinct dimensions (see, for example, Bolt, 
in press; Gierl, 2005; Stout et al., 1996). Finally, item format 
and reading passage were combined because almost every 
dimension in each category was dimensionally distinct, 
producing nine clusters for the confirmatory analysis. 
DIMTEST rejected the null hypothesis for all item clusters, 
except sample 2c in passage 2 and all samples in passage 
5, indicating that the clusters associated with sentence 
completion and reading passage are, for the most part, 
dimensionally distinct from one another (see Table 15).

Because the sentence completion and passage-based 
reading comprehension items produced interpretable, 
dimensionally distinct clusters, the factor loadings for a 
9-dimensional model were estimated using NOHARM. 
This model provided adequate fit to the data across all 
three samples, as shown in Table 16. Tanaka’s index 
was high and comparable across samples ranging from 
0.988 to 0.990. The RMSR was low and comparable 
across samples at 0.005. The common factor parameter 
estimates for the Book 2a data are presented in Table 
17. The correlations between the dimensions were 
moderate to high, ranging from 0.525 to 1.000 (see 
Footnote 13).

Table 17
Nine-Dimensional Solution for Confirmatory Item 
Format and Passage Model in Critical Reading 
Using Book 2a

Item
Dimension

1 2 3 4 5 6 7 8  9

1  0.675 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  
2 0.673 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
3 0.559 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
4 0.522 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
5 0.471 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
6 0.532   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  
7 0.456   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  
8 0.417   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  
9 0.0 0.587   0.0 0.0 0.0 0.0 0.0 0.0  0.0  

10 0.0 0.742   0.0 0.0 0.0 0.0 0.0 0.0  0.0  
11 0.0 0.0 0.580   0.0 0.0 0.0 0.0 0.0  0.0  
12 0.0 0.0 0.663   0.0 0.0 0.0 0.0 0.0  0.0  
13 0.0 0.0 0.0 0.547   0.0 0.0 0.0 0.0  0.0  
14 0.0 0.0 0.0 0.557   0.0 0.0 0.0 0.0  0.0  
15 0.0 0.0 0.0 0.584   0.0 0.0 0.0 0.0  0.0  
16 0.0 0.0 0.0 0.561   0.0 0.0 0.0 0.0  0.0  
17 0.0 0.0 0.0 0.599   0.0 0.0 0.0 0.0  0.0  
18 0.0 0.0 0.0 0.487 0.0 0.0 0.0 0.0  0.0
19 0.0 0.0 0.0 0.698   0.0 0.0 0.0 0.0  0.0
20 0.0 0.0 0.0 0.704   0.0 0.0 0.0 0.0  0.0
21 0.0 0.0 0.0 0.411   0.0 0.0 0.0 0.0  0.0
22 0.0 0.0 0.0 0.593   0.0 0.0 0.0 0.0  0.0
23 0.0 0.0 0.0 0.710   0.0 0.0 0.0 0.0  0.0
24 0.0 0.0 0.0 0.570   0.0 0.0 0.0 0.0  0.0
25 0.704   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
26 0.656   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
27 0.510   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
28 0.540   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
29 0.620 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
30 0.437   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
31 0.0 0.0 0.0 0.0 0.447   0.0 0.0 0.0  0.0
32 0.0 0.0 0.0 0.0 0.317   0.0 0.0 0.0  0.0
33 0.0 0.0 0.0 0.0 0.664   0.0 0.0 0.0  0.0
34 0.0 0.0 0.0 0.0 0.646   0.0 0.0 0.0  0.0
35 0.0 0.0 0.0 0.0 0.654   0.0 0.0 0.0  0.0
36 0.0 0.0 0.0 0.0 0.573   0.0 0.0 0.0  0.0
37 0.0 0.0 0.0 0.0 0.584   0.0 0.0 0.0  0.0
38 0.0 0.0 0.0 0.0 0.697   0.0 0.0 0.0  0.0
39 0.0 0.0 0.0 0.0 0.503   0.0 0.0 0.0  0.0

Table 17 (continued)

Item
Dimension

1 2 3 4 5 6 7 8  9

40 0.0 0.0 0.0 0.0 0.538   0.0 0.0 0.0  0.0
41 0.0 0.0 0.0 0.0 0.592   0.0 0.0 0.0  0.0
42 0.0 0.0 0.0 0.0 0.562   0.0 0.0 0.0  0.0
43 0.0 0.0 0.0 0.0 0.415   0.0 0.0 0.0  0.0
44 0.637   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
45 0.435   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
46 0.571   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
47 0.354   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
48 0.382   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0
49 0.0 0.0 0.0 0.0 0.0 0.603   0.0 0.0  0.0
50 0.0 0.0 0.0 0.0 0.0 0.507   0.0 0.0  0.0
51 0.0 0.0 0.0 0.0 0.0 0.0 0.731   0.0  0.0
52 0.0 0.0 0.0 0.0 0.0 0.0 0.531   0.0  0.0
53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.558   0.0
54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.336   0.0
55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.598   0.0
56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.527   0.0
57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.361   0.0
58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.713   0.0
59 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.719
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.731
61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.722
62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.586
63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.682
64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.527
65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.788
66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.740
67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.551

Note: Dimensions 1 through 9 correspond to sentence completion 
items and passage 1 through 8 items, respectively.

Item
Dimension Correlations

1 2 3 4 5 6 7 8 9

1 1.000
2 0.707 1.000
3 0.861 0.533 1.000
4 0.882 0.693 0.799 1.000
5 0.878 0.661 0.790 0.902 1.000
6 1.099 0.786 1.008 1.014 1.003 1.000
7 0.820 0.639 0.736 0.803 0.789 1.038 1.000
8 0.784 0.693 0.669 0.846 0.870 0.978   0.835 1.000
9 0.796 0.525 0.680 0.822 0.825 0.912 0.788 0.827 1.000



18

Cognitive Skill Categories
Overview
The second set of confirmatory analyses used the College 
Board cognitive skill categories as the organizing principle 
to guide the assessment of dimensionality. The skill 
categories were first introduced in 2004 at a symposium 
conducted at the annual meeting of the National Council 
on Measurement in Education in San Diego. The 
symposium was titled, “Connecting Curriculum and 
Assessment Through Meaningful Score Reports.” College 
Board researchers presented papers on their work related 
to extracting detailed diagnostic information from the 
SAT, focusing on the mathematics and critical reading 
sections. Two of the papers in the symposium focused 
specifically on developing cognitive skill categories and 
coding SAT items that represented these skills. To date, 
only preliminary empirical evidence has been collected 
to evaluate the reliability and validity of these skills. 
Therefore, our confirmatory dimensionality analyses 
were designed to assess empirically the dimensions 
associated with the cognitive skill categories.

The categories were identified by asking subject-matter 
experts to identify the skills required to solve the SAT 
items, keeping in mind the strategies that would be used 
by the “just qualified candidate” who responded correctly 
to the item (Huff, 2004, p. 11). These instructions were 
designed to circumvent potential problems associated 
with strategy diversity, meaning the coding problems that 
can occur when examinees are perceived to use different 
strategies to solve an item (see Gierl, 1997a, 1997b; Gierl, 
Bisanz, Bisanz, and Boughton, 2003, p. 300; Gierl, Bisanz, 
and Li, 2004 for a discussion and illustration of this coding 
issue). In other words, the experts were asked to envision 
a representative group of examinees who all used the same 
strategy to solve each item.

After the categories were defined, subject-matter 
experts also coded the SAT items for these skills. These 
experts were asked to (a) identify every skill required to 
solve each item, but also to (b) specify the primary skill, 
which was defined as the most important skill required 
to solve the item. These instructions have significant 
implications for our confirmatory dimensionality analyses. 
Instruction 1—code all skills—implies the data will display 
a complex factor structure, especially if the SAT items 
are believed to elicit multiple skills. In other words, if 
cognitive skills represent important dimensions and items 
elicit multiple cognitive skills, then each item will load 
on more than one dimension. Alternatively, instruction 
2—code primary skill only—implies the data will display 
a simple factor structure because only one cognitive skill 
will be associated with each item. Taken together, these 
two instructions, and the item coding they produce, will 
affect the dimensionality analyses because they prescribe 
either a complex or a simple factor structure. For this 

report, only the data associated with instruction 2 are used. 
The data associated with instruction 1 will be evaluated 
after we conduct additional reliability studies to determine 
the consistency of the skill category coding across the 
subject-matter experts.

Mathematics
O’Callaghan, Morley, and Schwartz (2004) identified five 
skill categories in mathematics. However, the College 
Board only designated four of these skills as primary. The 
four primary mathematics skills included applying basic 
mathematics knowledge, applying advanced mathematics 
knowledge, managing complexity, and modeling and 
insight. A short description of each primary mathematics 
skill is presented in Appendix A.

Using skill as the organizing principle, confirmatory 
DIMTEST rejected some skill categories across samples 
(see Table 18). That is, confirmatory DIMTEST rejected the 
null hypothesis for two samples in basic mathematics (the 
Book 2a sample was close to the critical value with p=0.0537, 
so this result was considered statistically significant), one 
sample in advanced mathematics (the Book 2a sample 
was close to the critical value with p=0.0547, so this 
result was considered statistically significant), one sample 
in managing complexity (the Book 2a sample, again, was 
close to the critical value with p=0.0642, so this result 
was considered statistically significant), and all three 
samples in modeling insight. If we interpret the results 
from Book 2a as indicative of multidimensionality and 
an attempt to replicate the result across samples, then our 
findings suggest that basic mathematics and modeling and 
insight are dimensionally distinct skills, whereas advanced 
mathematics and managing complexity are not.

Because the items in the mathematics content areas 
produced dimensionally distinct clusters when the test 
specifications were used as the organizing principle, skills 
and content area were combined and the dimensionality 
of the resulting clusters was evaluated. Both between- and 
within-cluster analyses were conducted. For the between-
cluster analyses, the dimensional homogeneity of the skills 
between each content area was evaluated. That is, each 
skill category for each content area served as a separate AT 
with all remaining items on the mathematics test serving 

Table 18
Confirmatory DIMTEST Results by Mathematics 
Skill Category

Book

Basic Advanced Complexity Insight

T p T p T p T p

2a 1.6096 0.0537 1.6012 0.0547 1.5206 0.0642 4.7194 0.0000

2c 0.8171 0.2069 0.0440 0.4824 0.8509 0.1974 4.2834 0.0000

5 2.7506 0.0030 0.7195 0.2359 1.2272 0.1099 3.3069 0.0005

Note: Each dimension served as a separate AT, with the remaining 
items serving as a PT.
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as a PT. The results are presented in Table 19. For algebra, 
confirmatory DIMTEST rejected the null hypothesis for 
one sample in basic mathematics and two samples in 
modeling and insight. For arithmetic, DIMTEST rejected 
all three samples for basic mathematics and one sample in 
advanced mathematics (assuming p=0.0525 is considered 
a statistically significant result). For geometry, DIMTEST 
rejected one sample in advanced mathematics, one sample 
in managing complexity, and one sample in modeling 
and insight. For miscellaneous, DIMTEST rejected one 
sample in modeling and insight. Taken together, only 
modeling and insight for algebra and basic mathematics 
in arithmetic appear to be dimensionally distinct skill 
clusters across the content areas.

For the within-cluster analyses, the dimensional 
homogeneity of the skill within each content area was 
evaluated. In other words, each skill category served 
as a separate AT with the remaining items within each 
mathematics content area serving as a PT. The results 
are presented in Tables 20a through 20d. For algebra, 
DIMTEST rejected the null hypothesis for one sample in 
basic mathematics, one sample in advanced mathematics, 
and three samples in modeling and insight. Thus, it 
appears that modeling complexity is the only detectable 
dimension in algebra. For arithmetic, DIMTEST rejected 
three samples for basic mathematics, two samples for 
advanced mathematics, and three samples in modeling 
and insight. Thus, the skills associated with basic 
mathematics, advanced mathematics, and modeling 
and insight are detectable in arithmetic. For geometry, 
DIMTEST rejected two samples in basic mathematics 
and one sample in managing complexity (in this case, 
p=0.0567 was considered statistically significant because 
it was close to the critical value of 0.05). Thus, only basic 
mathematics skills are detectable in geometry. Finally, for 
miscellaneous, DIMTEST rejected no samples, implying 
no dimensionally distinct skill categories exist for these 
items.

Table 19
Confirmatory DIMTEST Results by Mathematics Content Area and Skill Category

Skill

Algebra Arithmetic
2a 2c 5 2a 2c 5

T p T p T p T p T p T p
Basic 1.1272 0.1298 2.0255 0.0214 0.0207 0.4918 2.6116 0.0045 3.3123 0.0005 2.9777 0.0015
Advanced 0.7400 0.2296 0.8087 0.2093 0.7332 0.2317 1.6206     0.0525 0.9530     0.1703 1.1960     0.1158
Complexity 0.4191 0.3376 0.7641 0.2224 0.6971 0.2429 0.7569     0.2245 -0.5067     0.6938 0.5428     0.2936
Insight 1.8297 0.0336 1.1037 0.1349 1.6876 0.0457 0.4892     0.3123 0.6604     0.2545 1.1488     0.1253

Skill

Geometry Miscellaneous
2a 2c 5 2a 2c 5

T p T p T p T p T p T p
Basic -0.3900 0.6517 0.5642 0.2863 0.6697 0.2515 -0.5774 0.7182 1.2432 0.1069 0.9960 0.1596
Advanced 0.8435 0.1995 1.6715 0.0473 1.3615 0.0867 NA NA NA NA NA NA
Complexity 1.6605 0.0484 0.5368 0.2957 0.2151 0.4149 0.8344 0.2020 1.2115 0.1129 1.3159 0.0941
Insight 1.0775 0.1406 0.6525 0.2570 1.8971 0.0289 1.7759 0.0379 0.4081 0.3416 0.3241 0.3729
Note: Each dimension served as a separate AT, with the remaining items serving as a PT. NA means that the cell contained 0 items.

Table 20a
Confirmatory DIMTEST Results by Mathematics 
Skill Category Within Algebra

Book

Basic (8) Advanced (3) Complexity (3) Insight (5)

T p T p T p T p

2a 1.1608 0.1229 0.8452 0.1990 0.0416 0.4834 3.4457 0.0003
2c 1.8435 0.0326 0.4491 0.3267 0.7735 0.2196 2.4064 0.0081
5 1.0645 0.1436 1.9034 0.0285 1.0931 0.1372 3.0284 0.0012
Note: Each skill category served as a separate AT, with the remaining 
items serving as a PT. The number of items measuring each dimen-
sion is in parentheses on the top of the column.

Table 20c
Confirmatory DIMTEST Results by Mathematics 
Skill Category Within Geometry

Book

Basic (5) Advanced (3) Complexity (2) Insight (5)

T p T p T p T p

2a 1.1361 0.1280 0.0713 0.5284 1.5832 0.0567 0.3367 0.3682
2c 1.7765 0.0378 1.0469 0.1476 0.3425 0.6340 0.2775 0.3907
5 2.3488 0.0094 0.9502 0.1710 0.0839 0.4666 0.0540 0.4785

Table 20b
Confirmatory DIMTEST Results by Mathematics 
Skill Category Within Arithmetic

Book

Basic (3) Advanced (2) Complexity (2) Insight (5)

T p T p T p T p

2a 2.7026 0.0034 1.9303 0.0268 1.2970 0.0973 2.4437 0.0073
2c 2.3250 0.0100 1.4589 0.0723 0.8338 0.2022 2.9987 0.0014
5 2.1232 0.0169 1.9772 0.0240 1.1732 0.1204 1.7678 0.0385

Table 20d
Confirmatory DIMTEST Results by Mathematics 
Skill Category Within Miscellaneous

Book

Basic (2) Advanced (0) Complexity (3) Insight (3)

T p T p T p T p

2a -2.3734 0.9912 NA NA 1.5034 0.0664 -0.2784 0.6096
2c 0.9525 0.8296 NA NA 1.1008 0.1355 -1.3265 0.9077
5 -2.6198 0.9956 NA NA 0.4771 0.3166 -0.8293 0.7965
Note: NA means that the cell contained 0 items.
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Because the skills were dimensionally distinct within 
several content areas, the factor loadings for four content-
based 4-dimensional skill models were estimated using 
NOHARM. In other words, each skill category defined 
the multidimensional structure within each content area. 
These models provided adequate fit to the data across 
all three samples, as shown in Table 21. Tanaka’s index 
was high and comparable across samples ranging from 
0.993 to 0.999. The RMSR was low and comparable across 
samples, ranging from 0.003 to 0.005. The common factor 
parameter estimates for the Book 2a data are presented in 
Table 22 a–d. The correlations between the skill dimensions 
were high, ranging from 0.817 to 1.000.

Table 21
NOHARM Fit Indices for Mathematics Skill 
Category Within Content Area

Book

Content Area

Algebra Arithmetic Geometry Miscellaneous

Tanaka RMSR Tanaka RMSR Tanaka RMSR Tanaka RMSR

2a 0.993 0.005 0.999 0.003 0.995 0.005 0.998 0.003
2c 0.994 0.005 0.998 0.003 0.994 0.005 0.999 0.003
5 0.995 0.004 0.998 0.004 0.994 0.006 0.997 0.004

Table 22a
Four-Dimensional Solution for Skill Items in Algebra 
Book 2a

Item
Dimension

1 2 3 4
14 0.763 0.0 0.0 0.0
17 0.699 0.0 0.0 0.0

5 0.672 0.0 0.0 0.0
9 0.660 0.0 0.0 0.0
2 0.655 0.0 0.0 0.0
1 0.626 0.0 0.0 0.0

10 0.598 0.0 0.0 0.0
8 0.584 0.0 0.0 0.0

18 0.0 0.658 0.0 0.0
4 0.0 0.653 0.0 0.0
3 0.0 0.623 0.0 0.0

11 0.0 0.0 0.678 0.0
12 0.0 0.0 0.567 0.0
16 0.0 0.0 0.422 0.0

6 0.0 0.0 0.0 0.544
7 0.0 0.0 0.0 0.581

13 0.0 0.0 0.0 0.360
15 0.0 0.0 0.0 0.506
19 0.0 0.0 0.0 0.843

Note: The items in the table are sorted by skill category so the factor 
loadings are easier to interpret.  Dimensions 1 through 4 correspond 
to basic mathematics, advanced mathematics, managing complexity, 
and modeling and insight, respectively.

Item
Dimension Correlations

1 2 3 4
1 1.000
2 1.004 1.000
3 0.927 0.908 1.000
4 0.862 0.819 0.940 1.000

Table 22b
Four-Dimensional Solution for Skill Items in 
Arithmetic Book 2a

Item
Dimension

1 2 3 4
2 0.728 0.0 0.0 0.0

10 0.587 0.0 0.0 0.0
1 0.490 0.0 0.0 0.0
3 0.0 0.670 0.0 0.0
6 0.0 0.623 0.0 0.0

11 0.0 0.0 0.642 0.0
4 0.0 0.0 0.487 0.0
5 0.0 0.0 0.0 0.627
7 0.0 0.0 0.0 0.739
8 0.0 0.0 0.0 0.611
9 0.0 0.0 0.0 0.445

12 0.0 0.0 0.0 0.655

Note: The items in the table are sorted by skill category so the factor 
loadings are easier to interpret. Dimensions 1 through 4 correspond 
to basic mathematics, advanced mathematics, managing complexity, 
and modeling and insight, respectively.

Item
Dimension Correlations

1 2 3 4
1 1.000
2 0.842 1.000
3 0.932 0.897 1.000
4 0.866 0.976 0.897 1.000

Table 22c
Four-Dimensional Solution for Skill Items in 
Geometry Book 2a

Item
Dimension

1 2 3 4
6 0.676 0.0 0.0 0.0
2 0.562 0.0 0.0 0.0

10 0.561 0.0 0.0 0.0
1 0.525 0.0 0.0 0.0

11 0.504 0.0 0.0 0.0
14 0.0 0.772 0.0 0.0

7 0.0 0.694 0.0 0.0
12 0.0 0.541 0.0 0.0

3 0.0 0.0 0.638 0.0
9 0.0 0.0 0.577 0.0
4 0.0 0.0 0.0 0.508
5 0.0 0.0 0.0 0.611
8 0.0 0.0 0.0 0.465

13 0.0 0.0 0.0 0.748
15 0.0 0.0 0.0 0.877

Note: The items in the table are sorted by skill category so the factor 
loadings are easier to interpret. Dimensions 1 through 4 correspond 
to basic mathematics, advanced mathematics, managing complexity, 
and modeling and insight, respectively.

Item
Dimension Correlations

1 2 3 4
1 1.000
2 0.981 1.000
3 1.005 1.010 1.000
4 0.961 1.049 1.013 1.000
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Critical Reading
VanderVeen (2004) identified seven skill categories in 
critical reading. As in mathematics, the College Board only 
designated four of these skills as primary. The four primary 
critical reading skills included determining the meaning of 
words; understanding the content, form, and function of 
sentences; understanding the content, form, and function 
of larger sections of text; and analyzing authors’ purposes, 
goals, and strategies. A short description of each primary 
critical reading skill is presented in Appendix B.

Using skill as the organizing principle, confirmatory 
DIMTEST rejected some skill categories across samples 
(see Table 23). More specifically, confirmatory DIMTEST 
rejected the null hypothesis for all samples in word 
meaning, all samples in understanding larger sections 
of text, and one sample in analyzing authors’ purposes, 
goals, and strategies. If we interpret the results from Book 
2a as indicative of multidimensionality and an attempt to 
replicate the results across samples, then our results suggest 
that word meaning and understanding larger sections of 
text are the only two dimensionally distinct skills.

Since item format produced dimensionally distinct clusters 
when the test specifications were used as the organizing 
principle, skills and item format were combined and the 
dimensionality of the resulting clusters was evaluated. As 
in mathematics, both between- and within-cluster analyses 
were conducted. For the between-cluster analyses, the 
dimensional homogeneity of the skills between each item 
type was evaluated, meaning that the items in each skill 
category served as a separate AT and all remaining critical 
reading items served as a PT. The results are presented in Table 
24. For sentence completion items, confirmatory DIMTEST 
rejected the null hypothesis for all three samples in word 
meaning and understanding sentences. For critical reading 
items, DIMTEST rejected the null hypothesis for all three 
samples in understanding sentences and understanding larger 
sections of text and one sample in analyzing purpose. Taken 
together, word meaning and understanding sentences are 
dimensionally distinct for sentence completion items, whereas 
understanding sentences and understanding larger sections of 
text are dimensionally distinct for critical reading items.

For the within-cluster analyses, the dimensional 
homogeneity of the skill within each item format area was 
evaluated where each skill category served as a separate 
AT and the remaining items within each item format area 
served as a PT. The results are presented in Tables 25a 
and 25b. For sentence completion and passage, DIMTEST 
rejected the null hypothesis for either zero or one sample 
across almost all categories, indicating that the skills are 
not dimensionally distinct within item format. The only 
exception was found for understanding larger sections of 
text within the critical reading items, where DIMTEST 
rejected the null hypothesis for Books 2a and 2c, if we 
interpret a p-value of 0.0511 as statistically significant.

Table 22d
Four-Dimensional Solution for Skill Items in 
Miscellaneous Book 2a

Item
Dimension

1 3 4
4 0.720 0.0 0.0
1 0.598 0.0 0.0
7 0.0 0.724 0.0
6 0.0 0.467 0.0
2 0.0 0.460 0.0
8 0.0 0.0 0.846
5 0.0 0.0 0.534
3 0.0 0.0 0.372

Note: The items in the table are sorted by skill category so the factor 
loadings are easier to interpret. Dimensions 1, 3, and 4 correspond to 
basic mathematics, managing complexity, and modeling and insight, 
respectively.

Item
Dimension Correlations

1 3 4
1 1.000
3 0.990 1.000
4 0.817 0.955 1.000

Table 23
Confirmatory DIMTEST Results by Critical Reading 
Skill Category

Book
Word Meaning

Understanding 
Sentences

Understanding 
Larger Sections

Analyzing 
Purpose

T p T p T p T p
2a 4.7681 0.0000 0.2039 0.4192 2.5645 0.0052 0.3646 0.3577
2c 5.1321 0.0000 0.3301 0.6293 3.7985 0.0001 2.1892 0.0143
5 4.7999 0.0000 1.1444 0.1262 2.6066 0.0046 0.3344 0.6310
Note: Each dimension served as a separate AT, with the remaining 
items serving as a PT.

Table 24
Confirmatory DIMTEST Results by Critical Reading Item Format and Skill Category

Skill

Sentence Completion Critical Reading
2a 2c 5 2a 2c 5

T p T p T p T p T p T p
Word Meaning 5.2510 0.0000 5.8057 0.0000 4.8734 0.0000 -0.0427 0.5170 -0.1366 0.5543 0.5912 0.2772
Understanding 
Sentences

3.3576 0.0004 2.4194 0.0078 4.0147 0.0000 1.9613 0.0249 2.4984 0.0062 2.7293 0.0032

Understanding 
Larger Sections

NA NA NA NA NA NA 2.4921 0.0063 3.8248 0.0001 2.5599 0.0052

Analyzing Purpose NA NA NA NA NA NA 0.4368 0.3311 2.2251 0.0130 -0.2865 0.6128
Note: Each dimension served as a separate AT, with the remaining items serving as a PT. NA means that the cell contained 0 items.
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Table 25a
Confirmatory DIMTEST Results by Critical Reading 
Skills Within Sentence Completion

Book
Word Meaning

Understanding 
Sentences

Understanding 
Larger Sections

Analyzing  
Purpose

T p T p T p T p
2a 0.9588 0.1688 0.0796 0.4683 NA NA NA NA
2c 0.7360 0.2309 0.6862 0.2463 NA NA NA NA
5 1.0180 0.1543 0.8474 0.1984 NA NA NA NA
Note: Each skill category served as a separate AT with the remaining 
items serving as a PT. NA means that the cell contained 0 items.

Table 25b
Confirmatory DIMTEST Results by Critical Reading 
Skills Within Critical Reading

Book
Word Meaning

Understanding 
Sentences

Understanding 
Larger Sections

Analyzing 
Purpose

T p T p T p T p
2a 0.1913 0.4242 0.6408 0.2608 1.6339 0.0511 -0.089 0.5353
2c -0.067 0.5268 1.0672 0.1429 2.2164 0.0133 1.3115 0.0948
5 1.0816 0.1397 1.0617 0.1442 1.0016 0.1583 -1.068 0.8573

Table 26a
Confirmatory DIMTEST Results by Critical Reading Skills Between Reading Passages Using Book 2a

Skill
Passage 1 Passage 2 Passage 3 Passage 4

T p T p T p T p
Word Meaning – – – – NA NA – –
Understanding Sentences – – NA NA 4.9493 0.0000 2.5057 0.0061
Understanding Larger Sections 1.8683 0.0309 NA NA 2.7770 0.0027 4.5915 0.0000
Analyzing Purpose – – – – 1.3522 0.0882 0.5749 0.2827

Skill
Passage 5 Passage 6 Passage 7 Passage 8

T p T p T p T p
Word Meaning NA NA – – NA NA – –
Understanding Sentences – – – – 0.2208 0.4126 6.1075 0.0000
Understanding Larger Sections NA NA 2.6082 0.0046 3.5328 0.0002 5.3539 0.0000
Analyzing Purpose – – – – – – -0.2443 0.5965
Note: Each skill within a reading passage served as a separate AT, with the remaining items serving as a PT. NA means that the cell contained 0 
items and a dash (–) indicates the cell only contain one item, therefore DIMTEST analyses could not be conducted.

Table 26b
Confirmatory DIMTEST Results by Critical Reading Skills Between Reading Passages Using Book 2c

Skill
Passage 1 Passage 2 Passage 3 Passage 4

T p T p T p T p
Word Meaning – – – – NA NA – –
Understanding Sentences – – NA NA 3.2068 0.0007 1.4111 0.0791
Understanding Larger Sections 2.6443 0.0041 NA NA 1.2313 0.1091 4.9525 0.0000
Analyzing Purpose – – – – 2.3612 0.0091 0.7277 0.2334

Skill
Passage 5 Passage 6 Passage 7 Passage 8

T p T p T p T p
Word Meaning NA NA – – NA NA – –
Understanding Sentences – – – – -1.2125 0.8873 6.1591 0.0000
Understanding Larger Sections NA NA 2.5663 0.0051 3.2844 0.0005 5.3516 0.0000
Analyzing Purpose – – – – – – 1.7925 0.0365

Table 26c
Confirmatory DIMTEST Results by Critical Reading Skills Between Reading Passages Using Book 5

Skill
Passage 1 Passage 2 Passage 3 Passage 4

T p T p T p T p
Word Meaning – – – – NA NA – –
Understanding Sentences – – NA NA 4.7217 0.0000 -0.4648 0.6790
Understanding Larger Sections 2.4838 0.0065 NA NA 1.8786 0.0302 4.3749 0.0000
Analyzing Purpose – – – – 0.2500 0.4013 0.5135 0.3038

Skill
Passage 5 Passage 6 Passage 7 Passage 8

T p T p T p T p
Word Meaning NA NA – – NA NA – –
Understanding Sentences – – – – -0.0116 0.5046 5.4684 0.0000
Understanding Larger Sections NA NA 2.1970 0.0140 3.4633 0.0003 5.4728 0.0000
Analyzing Purpose – – – – – – 0.4142 0.6606

Taken together, the between- and within-cluster 
dimensionality analyses indicate that word meaning 
and understanding sentences are dimensionally distinct 
for sentence completion items, whereas understanding 
sentences and understanding larger sections of text are 
dimensionally distinct for critical reading items when 
both item formats serve as the composite measure. 
The skills are not dimensionally distinct when either 
sentence completion or critical reading items serve as the 
conditioning variable.

The reading passages in the test specifications also 
produced dimensionally distinct clusters. Therefore, 
skills and reading passages were combined to produce 
distinct clusters that were tested for dimensional 
homogeneity. For these analyses, only between-passage 
comparisons were conducted because many of the 
cells contained a small number of items and, thus, 
provided an inadequate representation of the skills for 
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the short reading passages. The results are presented 
in Tables 26a to 26c. Across the 13 comparisons, 
confirmatory DIMTEST rejected the null hypothesis 
for either two or three samples in all comparisons 
except 5: analyzing purpose in passage 3, understanding 
sentences in passage 4, analyzing purpose in passage 4, 
understanding sentences in passage 7, and analyzing 
purpose in passage 8. These findings reveal that most of 
the skill categories in critical reading are dimensionally 
distinct across the eight reading passages.

Because the skills were dimensionally distinct between 
the two item formats, the factor loadings for each skill 
were estimated using NOHARM. In other words, each skill 
category for each item format defined the multidimensional 
structure. The 6-dimensional model provided adequate fit 
to the data across all three samples, as shown in Table 27. 
Tanaka’s index was high and comparable across samples 
ranging from 0.985 to 0.988. The RMSR was low and 
comparable across samples, ranging from 0.005 to 0.006. 
The common factor parameter estimates for the Book 2a 
data are presented in Table 28. The correlations between 
the skill-by-item format dimensions were high, ranging 
from 0.891 to 1.000.

Table 27
NOHARM Fit Indices for Critical Reading Skill 
Category Across Item Formats and Reading 
Passages

Book
Fit Index

Tanaka RMSR
2a 0.985 0.006
2c 0.986 0.006
5 0.988 0.005

Table 28
Six-Dimensional Solution for Critical Reading 
Skill Category Across Item Formats and Reading 
Passages Using Book 2a

Item
Dimension

1 2 3 4 5 6
1 0.679 0.0 0.0 0.0 0.0 0.0
2 0.677 0.0 0.0 0.0 0.0 0.0

29 0.624 0.0 0.0 0.0 0.0 0.0
46 0.575 0.0 0.0 0.0 0.0 0.0
28 0.544 0.0 0.0 0.0 0.0 0.0

6 0.536 0.0 0.0 0.0 0.0 0.0
5 0.474 0.0 0.0 0.0 0.0 0.0

30 0.440 0.0 0.0 0.0 0.0 0.0
45 0.438 0.0 0.0 0.0 0.0 0.0

8 0.420 0.0 0.0 0.0 0.0 0.0
25 0.0 0.700 0.0 0.0 0.0 0.0
26 0.0 0.651 0.0 0.0 0.0 0.0
44 0.0 0.633 0.0 0.0 0.0 0.0

3 0.0 0.554 0.0 0.0 0.0 0.0
4 0.0 0.518 0.0 0.0 0.0 0.0

27 0.0 0.507 0.0 0.0 0.0 0.0
7 0.0 0.452 0.0 0.0 0.0 0.0

48 0.0 0.379 0.0 0.0 0.0 0.0
47 0.0 0.352 0.0 0.0 0.0 0.0
49 0.0 0.0 0.583 0.0 0.0 0.0
21 0.0 0.0 0.351 0.0 0.0 0.0
54 0.0 0.0 0.272 0.0 0.0 0.0
65 0.0 0.0 0.0 0.711 0.0 0.0
23 0.0 0.0 0.0 0.682 0.0 0.0
66 0.0 0.0 0.0 0.675 0.0 0.0
19 0.0 0.0 0.0 0.671 0.0 0.0
60 0.0 0.0 0.0 0.665 0.0 0.0
61 0.0 0.0 0.0 0.659 0.0 0.0
58 0.0 0.0 0.0 0.643 0.0 0.0
33 0.0 0.0 0.0 0.638 0.0 0.0
35 0.0 0.0 0.0 0.628 0.0 0.0
22 0.0 0.0 0.0 0.569 0.0 0.0
16 0.0 0.0 0.0 0.540 0.0 0.0
11 0.0 0.0 0.0 0.490 0.0 0.0
64 0.0 0.0 0.0 0.484 0.0 0.0
18 0.0 0.0 0.0 0.469 0.0 0.0
57 0.0 0.0 0.0 0.330 0.0 0.0
38 0.0 0.0 0.0 0.0 0.670 0.0
51 0.0 0.0 0.0 0.0 0.638 0.0
63 0.0 0.0 0.0 0.0 0.617 0.0
17 0.0 0.0 0.0 0.0 0.576 0.0
12 0.0 0.0 0.0 0.0 0.556 0.0
36 0.0 0.0 0.0 0.0 0.551 0.0
50 0.0 0.0 0.0 0.0 0.550 0.0
42 0.0 0.0 0.0 0.0 0.541 0.0
55 0.0 0.0 0.0 0.0 0.541 0.0
14 0.0 0.0 0.0 0.0 0.535 0.0

Table 28 (continued)

Item
Dimension

1 2 3 4 5 6
10 0.0 0.0 0.0 0.0 0.529 0.0
62 0.0 0.0 0.0 0.0 0.529 0.0
13 0.0 0.0 0.0 0.0 0.525 0.0
40 0.0 0.0 0.0 0.0 0.517 0.0
53 0.0 0.0 0.0 0.0 0.505 0.0
39 0.0 0.0 0.0 0.0 0.483 0.0
56 0.0 0.0 0.0 0.0 0.477 0.0
52 0.0 0.0 0.0 0.0 0.464 0.0
31 0.0 0.0 0.0 0.0 0.430 0.0

9 0.0 0.0 0.0 0.0 0.415 0.0
43 0.0 0.0 0.0 0.0 0.399 0.0
20 0.0 0.0 0.0 0.0 0.0 0.670
59 0.0 0.0 0.0 0.0 0.0 0.650
34 0.0 0.0 0.0 0.0 0.0 0.617
41 0.0 0.0 0.0 0.0 0.0 0.565
37 0.0 0.0 0.0 0.0 0.0 0.558
15 0.0 0.0 0.0 0.0 0.0 0.557
24 0.0 0.0 0.0 0.0 0.0 0.544
67 0.0 0.0 0.0 0.0 0.0 0.502
32 0.0 0.0 0.0 0.0 0.0 0.304

Note: Dimensions 1 through 6 correspond to sentence completion 
items and passage 1 through 8 items, respectively.

Item
Dimension Correlations

1 2 3 4 5   6
1 1.000
2 0.999 1.000
3 1.104 1.109 1.000
4 0.891 0.924 1.099 1.000
5 0.902 0.924 1.116 0.990 1.000
6 0.920 0.903 1.087 1.011 1.006 1.000
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Summary of SAT 
Dimensionality Results
The purpose of this research report is to present the 
results from our analyses designed to identify dimensions 
on the mathematics and critical reading sections of the 
SAT that could promote diagnostic inferences about 
students’ cognitive skills. To identify the dimensions that 
underlie student performance on the SAT, exploratory 
and confirmatory analyses were conducted. The outcomes 
from our dimensionality analyses in mathematics and 
critical reading are summarized in Tables 29 and 30, 
respectively.

Exploratory analyses served as a logical first step 
in our evaluation because the dimensionality of the 
SAT is not well defined. Moreover, the results from 
exploratory analyses would allow us to evaluate, using a 
data-driven approach, whether the SAT was measuring 
a multidimensional construct. DIMTEST, DETECT, and 
nonlinear factor analysis were used.

DIMTEST is a nonparametric statistical procedure 
that conducts a hypothesis test to assess the presence of 
multidimensionality. This procedure is based on Stout’s 
(1987) concept of “essential unidimensionality,” which 
holds when only one dominant dimension influences 
the examinees’ performance on a set of test items. The 
DIMTEST results for the SAT revealed that at both the 
composite and section levels, the data contained more 
than one dimension.

DETECT is a nonparametric dimensionality assessment 
procedure designed to determine the dimensional 
structure underlying test data. This procedure identifies 
mutually exclusive, dimensionally homogeneous 
clusters of items that are most easily identified when 
the data approximate simple structure. The DETECT 
results for the composite test revealed a weak amount of 
dimensionality but with interpretable simple structure for 
the two test sections across two of the three samples. The 
DETECT results for mathematics also indicated a weak 
amount of dimensionality but with the data displaying 
complex structure across all three samples. Similarly, 
for critical reading, the DETECT results indicated a 
weak amount of dimensionality with the data displaying 

Table 29
Summary of Dimensionality Results in Mathematics

Mathematics

Book

2a 2c 5

Exploratory

DIMTEST Reject Ho Reject Ho Reject Ho

No. of Dimensions1

DETECT 4 5 4

Scree 2 2 2

Kaiser 2 2 2

MAP 2 2 2

Confirmatory2

Content Area (4)   4* 2 2

Item Type (3) 1 0 1

Skills (4)   4* 1 2

Skills Between Content Area 
(15)

2 2 1

Skills Within Algebra (4) 1 2 2

Skills Within Arithmetic (4) 3 2 3

Skills Within Geometry (4)   1* 1 1

Skills Within Miscellaneous 
(4)

0 0 0

1From these results, we concluded that the number of dimensions 
was 2. The promax-rotated factor solution for the 2-dimensional 
model is presented in Table 7.
2The total number of identifiable dimensions for each organizing 
principle is listed in parentheses.
*The observed p-values for some of the comparisons in these analy-
ses were very close to the critical value of 0.05. Therefore, these 
results are considered statistically significant in our summary (see 
Footnote 11).

Table 30
Summary of Dimensionality Results in Critical 
Reading

Critical Reading

Book

2a 2c 5

Exploratory1

DIMTEST Reject Ho Reject Ho Reject Ho

No. of Dimensions

DETECT 4 4 5

Scree 3 3 3

Kaiser 3 3 3

MAP 3 2 2

Confirmatory2

Item Format (2) 2 2 2

Reading Passage (8) 7 7 7

Item Format and 
Reading Passage (9)

8 7 8

Skills (4) 2 3 2

Skills Between Item 
Formats (6)

4 5 4

Skills Within Item 
Format (8)

0 0 3

Skills Between Reading 
Passages (13)

9 9 8

1From these results, we concluded that the number of dimensions 
was 3. The promax-rotated factor solution for the 3-dimensional 
model is presented in Table 8.
2The total number of identifiable dimensions for each organizing 
principle is listed in parentheses.
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complex structure across all three samples. When the 
Nandakumar and Ackerman (2004) algorithm was applied 
to the mathematics and critical reading items to identify 
homogeneous dimensional clusters, highly inconsistent 
clusters were identified across our three validation samples, 
suggesting DETECT may be ineffective at determining the 
dimensional structure when the data display complex 
structure.

To generate a more consistent dimensional structure, 
nonlinear factor analysis was used (McDonald, 1967, 
1997, 1999), as implemented with the computer 
program NOHARM (Fraser, 1988). We fit a variety of 
multidimensional models to the data, as guided by well-
known decision rules for identifying the number of 
dimensions. For mathematics, a 2-dimensional model 
provided the most parsimonious fit to the data. The 
correlation between the dimensions was 0.686. For 
critical reading, a 3-dimensional model provided the 
most parsimonious fit to the data. The correlations 
between the dimensions ranged from 0.655 to 0.726. 
From our exploratory analyses, we conclude that the 
SAT mathematics and critical reading items measure 
more than one dimension. However, the nature of these 
dimensions is unclear because exploratory analyses lack a 
substantive framework to guide the interpretative process. 
To overcome this limitation, confirmatory analyses were 
also conducted.

Confirmatory analyses rely on the logic of hypothesis 
testing where substantively meaningful hypotheses are first 
specified and then these hypotheses are tested statistically. 
For dimensionality assessment, the hypotheses specify the 
structural characteristics of the data. These characteristics 
can be specified because substantive explanations are 
available to describe the structure of the data. Thus, 
the purpose of the analysis is to test these substantive 
explanations.

Two different College Board organizing principles were 
used to guide the confirmatory analyses: test specifications 
and cognitive skill categories. Each principle allowed us to 
first specify a model describing the dimensional structure 
of the data and then test the model because the purpose 
of the analysis is to evaluate the hypothesized structure. 
Our organizing principles were selected to shed light 
on the potential diagnostic value of the SAT. Therefore, 
dimensions were selected and tested because they may 
help identify the cognitively based constructs associated 
with diverse test performance.

Two categories in the College Board test specifications 
were used in the first confirmatory analysis because they 
highlight important item features according to the test 
developers, they  are readily available and easy to use, and 
they can guide interpretation. It would also be easy to create 
subscores based on these test specification categories.

The mathematics test specification categories were 
content area and item type. Using content area as the 

organizing principle, confirmatory DIMTEST rejected 
the null hypothesis for two or more samples in arithmetic, 
geometry, and miscellaneous indicating three of the four 
content areas were dimensionally distinct from one another. 
Using item type as the organizing principle, confirmatory 
DIMTEST only rejected the null hypothesis for the 
nonroutine/insightful items, suggesting that item type 
was not a meaningful organizing principle for identifying 
dimensionally distinct clusters in mathematics. NOHARM 
was also used to estimate the parameters for the content-
based 4-dimensional model. The fit indices for this model 
were comparable across samples, indicating good model 
fit. The correlation between the dimensions were also very 
high, ranging from 0.946 to 1.000, indicating that these 
dimensions were closely related to one another.

The critical reading test specification categories were 
item format and reading passage. Using item format as 
the organizing principle, confirmatory DIMTEST rejected 
the null hypothesis for all three samples indicating the 
sentence completion and critical reading items were 
dimensionally distinct from one another. Using reading 
passage as the organizing principle, confirmatory 
DIMTEST rejected the null hypothesis for all passages 
across samples, except passage 5, indicating the items 
associated with the reading comprehension passages also 
measured distinct dimensions. Because the item format 
and reading passage categories produced dimensionally 
homogeneous item clusters, these categories were crossed 
to evaluate the dimensionality of the resulting item format-
by-reading passage item clusters. Again, confirmatory 
DIMTEST rejected the null hypothesis for almost all item 
clusters, indicating that the dimensions associated with 
sentence completion and reading passage were, for the 
most part, dimensionally distinct from one another. The 
parameters for the 9-dimensional model were estimated 
with NOHARM. The correlations between the dimensions 
were moderate to large, ranging from 0.525 to 1.000.

The second confirmatory analysis used the College 
Board’s cognitive skill categories as the organizing 
principle to guide the assessment of dimensionality. 
These skills were first described in 2004 at a symposium 
conducted at the annual meeting of the National Council 
on Measurement in Education in San Diego where College 
Board researchers presented papers on their work related 
to extracting detailed diagnostic information from the 
SAT. Because only preliminary empirical evidence has 
been collected to date, our confirmatory dimensionality 
analyses were designed to assess the dimensions associated 
with the cognitive skill categories.

In mathematics, the skills included applying 
basic mathematics knowledge, applying advanced 
mathematics knowledge, managing complexity, and 
modeling and insight. Confirmatory DIMTEST 
rejected the null hypothesis for two samples in basic 
mathematics and all three samples in modeling insight, 
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suggesting that basic mathematics and modeling and 
insight were dimensionally distinct skills in mathematics. 
Mathematics skills were also crossed with mathematics 
content areas because three of the content areas were 
found to be dimensionally distinct in the test specification 
confirmatory analyses. For the between-cluster analyses, 
confirmatory DIMTEST rejected the null hypothesis in 
two or more samples for modeling and insight in algebra 
and for basic mathematics in arithmetic. For the within-
cluster analyses, confirmatory DIMTEST rejected the 
null hypothesis for two or more samples in managing 
complexity in algebra; basic mathematics, advanced 
mathematics, and modeling and insight in arithmetic; 
and basic mathematics in geometry. The parameters for 
each content-based multidimensional skills model were 
estimated with NOHARM. The correlations between the 
dimensions were high, ranging from 0.817 to 1.000.

In critical reading, the skills included determining 
word meaning, understanding sentences, understanding 
larger sections of text, and analyzing authors’ purposes, 
goals, and strategies. Confirmatory DIMTEST rejected 
the null hypothesis for all samples in word meaning and 
understanding larger sections of text, revealing that these 
two categories represent dimensionally distinct skills.

Critical reading skills were crossed with item format 
because item format yielded dimensionally distinct 
clusters in the test specification confirmatory analyses. 
As in mathematics, both between- and within-cluster 
analyses were conducted. For the between-cluster 
analyses, confirmatory DIMTEST rejected the null 
hypothesis for all three samples in word meaning and 
understanding sentences using the sentence completion 
items. Confirmatory DIMTEST also rejected the null 
hypothesis for all samples in understanding sentences 
and understanding larger sections of text for the reading 
passage items. For the within-cluster analyses, DIMTEST 
failed to reject the null hypothesis for either two or three 
samples across all skill categories, except one, indicating 
the majority of skills were not dimensionally distinct 
within any item format category.

The reading passages in the test specifications also 
produced dimensionally distinct clusters, therefore 
skills and reading passages were combined to produce 
distinct clusters that were tested for dimensional 
homogeneity. For these analyses, only between-passage 
comparisons were conducted because many of the cells 
contained a small number of items. Confirmatory 
DIMTEST rejected the null hypothesis for two or 
more samples in 8 of 13 comparisons, indicating 
that most of the skill categories in critical reading 
were dimensionally distinct across the 8 reading 
passages. The parameters for the passage-based 
multidimensional skills model were estimated with 
NOHARM. The correlations between the dimensions 
were high, ranging from 0.891 to 1.000.

Conclusions and 
Future Research 
Directions
The results of this study allow us to conclude that there 
is a multidimensional basis for test score inferences on the 
mathematics and critical reading sections of the SAT. 
Results from the exploratory analyses indicate that the 
data are multidimensional, as mathematics displayed 
two dimensions and critical reading displayed three 
dimensions. The correlations between the dimensions 
were moderate in both test sections.

Results from the confirmatory analyses also indicate 
that the SAT data are multidimensional. However, 
the sources designed to account for these dimensions 
in the test specification and skill categories were not 
found consistently across the samples in our analyses. 
This outcome suggests the College Board’s organizing 
principles approximate, but may not completely 
represent, the multidimensional structure of the data. 
As a result, we cannot claim that the multidimensional 
structure of the SAT supports diagnostic inferences 
about students’ cognitive skills; we can only claim 
that the mathematics and critical reading sections 
of the SAT measure more than one dimension. In 
mathematics, three of the four content areas were found 
to be dimensionally distinct. These content-based 
dimensions were highly correlated. Two of the four 
skills were also deemed to be dimensionally distinct. 
When the dimensionality of the skills within each 
content area was evaluated, the number of detectable 
dimensions ranged from zero in miscellaneous to three 
in arithmetic. The skill dimensions within each content 
area were highly correlated. In critical reading, all item 
format and reading passage clusters were found to be 
dimensionally distinct, except one. The correlations 
among these dimensions were moderate to high. Two of 
the four skills were found to be dimensionally distinct, 
as in mathematics. When the skills were evaluated 
across the item formats and reading passages, 8 of the 
13 skills were dimensionally distinct. The skills were 
highly correlated with one another.

Our general conclusions are consistent with the findings 
presented in the literature on the dimensionality of the 
SAT. For example, Cook et al. (1988), using confirmatory 
factor analysis to assess the dimensionality of the SAT 
verbal, concluded it was “slightly multidimensional.” Our 
results reveal that the critical reading section, which is 
now the primary verbal reasoning measure on the SAT, 
is clearly multidimensional. Multiple dimensions were 
relatively easy to identify and they appeared consistently 
across samples. Lawrence and Dorans (1987), using 
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exploratory and confirmatory factor analysis to assess the 
dimensionality of the SAT mathematical section, concluded 
it was unidimensional. However, they also claimed that 
exploratory analyses of the item-level data revealed a 
“slight departure from unidimensionality.” Our results, 
conducted exclusively at the item level, indicate that 
mathematics is multidimensional. However, the dimensions 
in mathematics were more difficult to identify and were 
less replicable across samples compared to critical reading. 
The organizing principles used in mathematics also yielded 
fewer dimensionally distinct clusters compared to critical 
reading (see Tables 29 and 30).

Future Direction #1: 
Single Versus Multiple 
Cognitive Skills Per Item
Multiple subject-matter experts coded the SAT items 
using skills in four cognitive categories. These experts 
were asked to identify every skill required to solve 
each item, but also to specify the primary skill which 
was described as the most important skill, required to 
solve the item. For this report, only the data associated 
with the primary skill were used. We noted earlier, 
however, that these instructions have implications 
for confirmatory dimensionality analyses. Coding all 
skills implies that the data may display a complex 
factor structure, especially if the SAT items elicit 
multiple skills. Coding primary skills, on the other 
hand, implies the data will display simple structure 
because only one cognitive skill will be associated 
with each item. Taken together, these two instructions, 
and the item coding they produce, will affect the 
dimensionality analyses because they prescribe either 
complex or simple structure.

In the current study, primary skills were modeled 
because the final codes were available from the College 
Board (these final ratings, in fact, were established by test 
development experts at the College Board). During the 
next stage of our dimensionality research, the complete 
rater codes will be evaluated. These codes may produce 
a complex dimensional structure that, in turn, may yield 
a more complete model (and, hence, a better description) 
for the SAT data. However, these analyses should only 
proceed if the items are coded consistently across the 
expert raters. To evaluate rater consistency in the skills 
coding, we will compute the judge discrepancy from 
the median (JDMj) and we will conduct a series of 
generalizability studies (g-studies).

JDMj and range are used in reliability studies to assess 
rater consistency relative to the median ratings. JDMj is 
computed as

1

K

j kj k
k

JDM X Md
�

� ��  ,

where j is the rater number, k is the item number, Xkj is the 
jth rater’s rating for item  k, and Mdk is the median rating 
for item j. Small JDMj suggests that rater discrepancy 
is small. The range also can be used to assess rater 
discrepancy using the formula R = XjH – XjL + 1. 

G-studies will also be conducted using the primary 
and complete rater codes. For the primary skills codes, an 
i × r: Item by Rater—fully crossed random effect model 
will be assessed, where the population of items and raters 
is seen as infinite. The variance components obtained 
from this model will be interpreted to evaluate rater 
consistency. The variance components include σ̂2

i, σ̂
2
r and  

σ̂2
ir, e. In this model, if the residual is small, then the rater 

variance component will allow us to make inferences 
about rater consistency where a small rater variance 
component implies strong rater agreement. On the other 
hand, if the residual is large, then additional facets will 
be modeled. For example, if the residual in mathematics 
is large, then we may add content as a facet because three 
of the four content areas were found to be dimensionally 
distinct. In this case, an (i:H) × r: (Item within Content 
Area by Rater)—nested mixed effect model will be used, 
where content is viewed as a fixed facet. Because this 
design would be unbalanced, a multivariate g-study 
would be conducted. A similar approach will be used 
with the primary skill categories in critical reading 
where our initial design will focus on the an i × r: Item by 
Rater—fully crossed random effect model.

For the complete rater codes, a different set of g-
studies will be conducted. Initially, for both mathematics 
and critical reading, we will conduct i × r × C: (Item 
by Rater by Skill Category)—fully crossed mixed effect 
model where skill category is a fixed facet because only 
four cognitive skills are available. Again, the magnitude of 
the variance components can be used to make inferences 
about rater consistency. When the residual is large, 
additional facets will be identified and added to the 
design in an attempt to decrease the error term. By 
conducting different reliability analyses (i.e., JDMj and 
g-studies) and different types of g-studies, we will be able 
to evaluate rater consistency and to identify important 
sources of rater inconsistency.

Future Direction #2: 
Modeling Strategy Use
The subject-matter experts were also asked to identify 
the skills required to solve the SAT items by envisioning 
a representative group of examinees who all used the 
same strategy to solve each item. These instructions were 
designed to circumvent potential problems associated 
with strategy diversity that can occur when examinees 
are perceived to use different strategies to solve an 
item. Unfortunately, this approach can be problematic 
because the experts can make an erroneous judgment 
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about strategy use or students can use multiple strategies. 
The extent of this problem is not clear on the SAT 
items, and neither is its impact on the analysis and the 
interpretation of the cognitive skill categories. However, 
measurement specialists must recognize that strategy 
diversity is unavoidable when students solve items on 
tests because multiple strategies are typically used by 
students to solve problems and that a student may even 
apply a different strategy to the same problem because, 
at any one point in time, a student possesses a repertoire 
of problem-solving strategies. Therefore, complex test-
taking performance should not be simplified by describing 
this performance with a single strategy or process unless 
it can be demonstrated that an item only elicits a single 
strategy or process.

As an alternative, subject-matter experts can be asked 
to identify the skills required to solve the SAT items, 
specify the items that measure these skills, and then 
attempt to connect the expert results to the student results 
using experimental and nonexperimental studies. The 
alternative approach has some appeal because it does not 
require the experts to make inferences about students’ 
cognitive item-level performance. Rather, it only requires 
the experts to make inferences about their own cognitive 
performance, given the salient demand characteristics of 
the items.

Regardless of whether students or experts are consulted, 
a cognitive model of test performance is postulated in both 
cases. Within the information-processing perspective in 
cognitive psychology, the use of the term “cognitive model” 
has specifically been used to describe interconnected 
mental processes that encode, translate, manipulate, and 
generate information under specific conditions. Cognitive 
models have currency not only among psychologists but 
also, increasingly, among educators. Within the last 50 
years, there has been increasing interest in using cognitive 
models to develop better large-scale achievement and 
aptitude tests (Cronbach and Meehl, 1955; Embretson, 
1999; Haladyna and Downing, 2004; Irvine and Kyllonen, 
2002; Mislevy, 1996; National Research Council, 2001; 
Pellegrino, Baxter, and Glaser, 1999; Snow and Lohman, 
1993; Sternberg, 1984). Test specialists are particularly 
interested in using cognitive models to develop large-
scale diagnostic tests of student learning and using scores 
from these tests to make specific inferences about what 
students know and can do outside of the testing situation. 
Cognitive models are assumed to be useful in developing 
diagnostic tests because items can be created to measure 
distinct processes of the learning cycle (as delineated in 
the cognitive model). Furthermore, it is believed that 
when test items are created to measure specific cognitive 
processes, inferences about student performance will also 
be specific to the processes measured. Thus, the prospect 
of using cognitive models in educational measurement is 
promising, except for one issue: The term cognitive model 

is used broadly in educational measurement, leading to 
potential confusion about the different types of models 
that potentially exist for organizing and understanding 
test performance. 

During the next stage of our research, we will describe 
and give examples of at least three kinds of cognitive 
models that are used in educational measurement, 
including the strengths and limitations of each model in 
elucidating test performance (Leighton, 2004). The first 
cognitive model we will discuss is of domain mastery, 
which is generated from content experts to establish an 
extensive set of interconnected knowledge and skills 
that are believed to conceptualize expertise within a 
content domain. The second cognitive model we will 
discuss is of test specifications, which can be generated 
to outline the specific achievement area to be tested and 
to provide precise guidelines for designing or selecting a 
representative sample of items from the content domain 
during test construction. The third cognitive model we 
will discuss is of task performance, which can be generated 
from students to validate or verify the actual set of 
interconnected knowledge and skills that students use to 
respond correctly to test items within a content domain. 
Our goal in discussing these distinct cognitive models is to 
provide a framework that can be used by the College Board 
when organizing evidence and when making inferences 
about students’ cognitive skills.

Future Direction #3: 
Scalability of Diagnostic 
Dimensions
Once the dimensions underlying test performance are 
identified, the scalability of these dimensions must be 
determined. A scalable score-related multidimensional 
structure requires statistical evidence demonstrating 
the subscores derived from the dimensions are invariant 
over time, across test forms, and across different groups 
of examinees (e.g., males and females). A test scalability 
analysis should also address the following questions 
(Luecht, 2005): (1) Does the data fit the proposed factor 
structure well enough to explain all nonrandom sources 
of variance? (2) Can competing models and factor 
structures be ruled out? (3) Is there sufficient evidence 
to support educational and policy-related decisions that 
may arise from the subscores? and (4) Are the diagnostic 
subscores meaningful and useful to stakeholders (e.g., 
students, parents, teachers)? In short, a test scalability 
analysis requires comprehensive studies designed to 
validate the inferences associated with the cognitive 
skills the subscores are deemed to measure. These types 
of studies are required to explicitly connect the SAT 
multidimensional structure, as identified in our analyses, 
with cognitive diagnostic test score inferences.
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Appendix A
Skill 1
Title: Applying basic mathematics knowledge
Description: Student can apply mathematics content 
and procedures that are usually learned in Algebra I or 
before. This content includes basic arithmetic concepts, 
operations, procedures, translation between verbal 
expressions and equations, graphing, reading graphs, 
definitions, and terminology. Basic geometry is also 
included in this skill category.

Skill 2
Title: Applying more advanced mathematics 
knowledge
Description: Student can apply mathematics content and 
procedures taught in high school geometry and Algebra 
II. Student can also apply some more advanced or complex 
applications of the knowledge obtained in Algebra I and 
earlier. This skill category covers procedures, translation 
between verbal expressions and equations, graphing, 
definitions, and terminology beyond that covered in the 
previous skill category. 

Skill 3
Title: Managing complexity
Description: Student can keep track of a great deal of 
information or proceed through many steps to solve a 
question with a higher level of complexity. Correctly 
answering a question that is multistep may require the 
student to have the initiative to continue on for each step 
in the path to the solution. In some cases, that initiative 
may be required to take the first step of plunging in and 
attempting the solution of a nonroutine problem.

Skill 4
Title: Modeling and insight
Description: Student can use insight and modeling to 
answer a question with a higher level of difficulty. Insights 
are those realizations that often seem easy when someone 
else points them out, but are difficult to see by oneself. A 
student who can model or “create a representation” has 
the ability to create equations for word problems when 
that involves more than just rote translation. They can 
also create or add to graphs or figures to solve problems. 
Part of the skill of creating representations is deciding 
what kind of representation would be useful for solving 
a problem.

Appendix B
Skill 1
Title: Determining the meaning of words
Description: Student determines the meaning of words 
in context by recognizing known words and connecting 
them to prior vocabulary knowledge. Student uses a variety 
of skills to determine the meaning of unfamiliar words, 
including pronouncing words to trigger recognition; 
searching for related words with similar meanings; and 
analyzing prefixes, roots, and suffixes. 

Skill 2
Title: Understanding the content, form, and 
function of sentences
Description: Student builds upon an understanding 
of words and phrases to determine the meaning of a 
sentence. Student analyzes sentence structures and draws 
on an understanding of grammar rules to determine 
how the parts of speech in a sentence operate together 
to support the overall meaning. Student confirms that 
his or her understanding of a sentence makes sense in 
relationship to previous sentences, personal experience, 
and general knowledge.

Skill 3
Title: Understanding the content, form, and 
function of larger sections of text
Description: Student synthesizes the meaning of multiple 
sentences into an understanding of paragraphs or larger 
sections of texts. Student recognizes a text’s organizational 
structure and uses that organization to guide his or 
her reading. Student can identify the main point of, 
summarize, characterize, or evaluate the meaning of 
larger sections of text. Student can identify underlying 
assumptions in a text, recognize implied consequences, 
and draw conclusions from a text.

Skill 4
Title: Analyzing authors’ purposes, goals, and 
strategies
Description: Student identifies an author’s intended 
audience and purpose for writing. Student analyzes an 
author’s choices regarding content, organization, style, 
and genre, evaluating how those choices support the 
author’s purpose and are appropriate for the intended 
audience and situation.
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